作者:印大大 | 来源:互联网 | 2024-11-17 14:43
本文介绍了如何在MapReduce作业中使用SequenceFileOutputFormat生成SequenceFile文件,并详细解释了SequenceFile的结构和用途。
在 MapReduce 作业中,可以通过指定 SequenceFileOutputFormat 来生成 SequenceFile 文件。SequenceFile 是 Hadoop 定义的一种二进制文件格式,用于存储大量键值对(key-value)的序列化数据。文件头部包含键和值的数据类型信息。
以下是一个示例,展示了如何在 MapReduce 作业中使用 SequenceFileOutputFormat:
public static class IndexStepOneMapper extends Mapper {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
FileSplit inputSplit = (FileSplit) context.getInputSplit();
String fileName = inputSplit.getPath().getName();
String[] words = value.toString().split(" ");
for (String w : words) {
context.write(new Text(w + "-" + fileName), new IntWritable(1));
}
}
}
public static class IndexStepOneReducer extends Reducer {
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
int count = 0;
for (IntWritable value : values) {
count += value.get();
}
context.write(key, new IntWritable(count));
}
}
// 设置输出格式为 SequenceFileOutputFormat
job.setOutputFormatClass(SequenceFileOutputFormat.class);
其他步骤与常规的 MapReduce 作业相同。
接下来是第二个步骤,读取前一个步骤生成的 SequenceFile 文件并进行进一步处理:
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class IndexStepTwo {
public static class IndexStepTwoMapper extends Mapper {
@Override
protected void map(Text key, IntWritable value, Context context) throws IOException, InterruptedException {
String[] split = key.toString().split("-");
context.write(new Text(split[0]), new Text(split[1] + "-->" + value));
}
}
public static class IndexStepTwoReducer extends Reducer {
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for (Text value : values) {
sb.append(value.toString()).append("\t");
}
context.write(key, new Text(sb.toString()));
}
}
public static void main(String[] args) throws Exception {
Configuration cOnf= new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(IndexStepTwo.class);
job.setMapperClass(IndexStepTwoMapper.class);
job.setReducerClass(IndexStepTwoReducer.class);
job.setNumReduceTasks(1);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setInputFormatClass(SequenceFileInputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path("F:\mrdata\index\out1"));
FileOutputFormat.setOutputPath(job, new Path("F:\mrdata\index\out2"));
job.waitForCompletion(true);
}
}
以上代码展示了如何在 MapReduce 作业中使用 SequenceFileInputFormat 和 SequenceFileOutputFormat,以实现数据的高效读写和处理。