热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

漫谈递归:递归的效率问题

递归在解决某些问题的时候使得我们思考的方式得以简化,代码也更加精炼,容易阅读。那么既然递归有这么多的优点,我们是不是什么问题都要用递归来解决呢?难道递归就没有缺点吗?今天我们就来讨论一下递归的不足之处。谈到递归就不得不面对它的效率问题。

递归在解决某些问题的时候使得我们思考的方式得以简化,代码也更加精炼,容易阅读。那么既然递归有这么多的优点,我们是不是什么问题都要用递归来解决呢?难道递归就没有缺点吗?今天我们就来讨论一下递归的不足之处。谈到递归就不得不面对它的效率问题。

为什么递归是低效的

还是拿斐波那契(Fibonacci)数列来做例子。在很多教科书或文章中涉及到递归或计算复杂性的地方都会将计算斐波那契数列的程序作为经典示例。如果现在让你以最快的速度用C#写出一个计算斐波那契数列第n个数的函数(不考虑参数小于1或结果溢出等异常情况),我不知你的程序是否会和下列代码类似:

public static ulong Fib(ulong n)
{
    return (n == 1 || n == 2) ? 1 : Fib(n - 1) + Fib(n - 2);
}

这段代码应该算是短小精悍(执行代码只有一行),直观清晰,而且非常符合许多程序员的代码美学,许多人在面试时写出这样的代码可能心里还会暗爽。但是如果用这段代码试试计算Fib(1000)我想就再也爽不起来了,它的运行时间也许会让你抓狂。

看来好看的代码未必中用,如果程序在效率不能接受那美观神马的就都是浮云了。如果简单分析一下程序的执行流,就会发现问题在哪,以计算Fibonacci(5)为例:

从上图可以看出,在计算Fib(5)的过程中,Fib(1)计算了两次、Fib(2)计算了3次,Fib(3)计算了两次,本来只需要5次计算就可以完成的任务却计算了9次。这个问题随着规模的增加会愈发凸显,以至于Fib(1000)已经无法再可接受的时间内算出。

我们当时使用的是简单的用定义来求 fib(n),也就是使用公式 fib(n) = fib(n-1) + fib(n-2)。这样的想法是很容易想到的,可是仔细分析一下我们发现,当调用fib(n-1)的时候,还要调用fib(n-2),也就是说fib(n-2)调用了两次,同样的道理,调用f(n-2)时f(n-3)也调用了两次,而这些冗余的调用是完全没有必要的。可以计算这个算法的复杂度是指数级的。

改进的斐波那契递归算法

那么计算斐波那契数列是否有更好的递归算法呢? 当然有。让我们来观察一下斐波那契数列的前几项:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 …

注意到没有,如果我们去掉前面一项,得到的数列依然满足f(n) = f(n-1) – f(n-2), (n>2),而我们得到的数列是以1,2开头的。很容易发现这个数列的第n-1项就是原数列的第n项。怎么样,知道我们该怎么设计算法了吧?我们可以写这样的一个函数,它接受三个参数,前两个是数列的开头两项,第三个是我们想求的以前两个参数开头的数列的第几项。

int fib_i(int a, int b, int n);

在函数内部我们先检查n的值,如果n为3则我们只需返回a+b即可,这是简单情境。如果n>3,那么我们就调用f(b, a+b, n-1),这样我们就缩小了问题的规模(从求第n项变成求第n-1项)。好了,最终代码如下:

int fib_i(int a, int b , int n)
{
    if(n == 3)
        return a+b;
    else
        return fib_i(b, a+b, n-1);
}

这样得到的算法复杂度是O(n)的。已经是线性的了。它的效率已经可以与迭代算法的效率相比了,但由于还是要反复的进行函数调用,还是不够经济。

递归与迭代的效率比较

我们知道,递归调用实际上是函数自己在调用自己,而函数的调用开销是很大的,系统要为每次函数调用分配存储空间,并将调用点压栈予以记录。而在函数调用结束后,还要释放空间,弹栈恢复断点。所以说,函数调用不仅浪费空间,还浪费时间。

这样,我们发现,同一个问题,如果递归解决方案的复杂度不明显优于其它解决方案的话,那么使用递归是不划算的。因为它的很多时间浪费在对函数调用的处理上。在C++中引入了内联函数的概念,其实就是为了避免简单函数内部语句的执行时间小于函数调用的时间而造成效率降低的情况出现。在这里也是一个道理,如果过多的时间用于了函数调用的处理,那么效率显然高不起来。

举例来说,对于求阶乘的函数来说,其迭代算法的时间复杂度为O(n):

int fact(n)
{
    int i;
    int r = 1;
    for(i = 1; i <= n; i++)
    {
        r *= i;
    }
    return r;
}

而其递归函数的时间复杂度也是O(n):

int fact_r(n)
{
    if(n == 0)
        return 1;
    else
        return n * f(n);
}

但是递归算法要进行n次函数调用,而迭代算法则只需要进行n次迭代而已。其效率上的差异是很显著的。

小结

由以上分析我们可以看到,递归在处理问题时要反复调用函数,这增大了它的空间和时间开销,所以在使用迭代可以很容易解决的问题中,使用递归虽然可以简化思维过程,但效率上并不合算。效率和开销问题是递归最大的缺点。

虽然有这样的缺点,但是递归的力量仍然是巨大而不可忽视的,因为有些问题使用迭代算法是很难甚至无法解决的(比如汉诺塔问题)。这时递归的作用就显示出来了。

递归的效率问题暂时讨论到这里。后面会介绍到递归计算过程与迭代计算过程,讲解得更详细点。

延伸阅读

此文章所在专题列表如下:

  1. 漫谈递归:递归的思想
  2. 漫谈递归:递归需要满足的两个条件
  3. 漫谈递归:字符串回文现象的递归判断
  4. 漫谈递归:二分查找算法的递归实现
  5. 漫谈递归:递归的效率问题
  6. 漫谈递归:递归与循环
  7. 漫谈递归:循环与迭代是一回事吗?
  8. 递归计算过程与迭代计算过程
  9. 漫谈递归:从斐波那契开始了解尾递归
  10. 漫谈递归:尾递归与CPS
  11. 漫谈递归:补充一些Continuation的知识
  12. 漫谈递归:PHP里的尾递归及其优化
  13. 漫谈递归:从汇编看尾递归的优化

本文地址:http://www.nowamagic.net/librarys/veda/detail/2321,欢迎访问原出处。


推荐阅读
  • 远程过程调用(RPC)是一种允许客户端通过网络请求服务器执行特定功能的技术。它简化了分布式系统的交互,使开发者可以像调用本地函数一样调用远程服务,并获得返回结果。本文将深入探讨RPC的工作原理、发展历程及其在现代技术中的应用。 ... [详细]
  • 本文介绍了数据库体系的基础知识,涵盖关系型数据库(如MySQL)和非关系型数据库(如MongoDB)的基本操作及高级功能。通过三个阶段的学习路径——基础、优化和部署,帮助读者全面掌握数据库的使用和管理。 ... [详细]
  • C#设计模式学习笔记:观察者模式解析
    本文将探讨观察者模式的基本概念、应用场景及其在C#中的实现方法。通过借鉴《Head First Design Patterns》和维基百科等资源,详细介绍该模式的工作原理,并提供具体代码示例。 ... [详细]
  • 本文详细介绍了福昕软件公司开发的Foxit PDF SDK ActiveX控件(版本5.20),并提供了关于其在64位Windows 7系统和Visual Studio 2013环境下的使用方法。该控件文件名为FoxitPDFSDKActiveX520_Std_x64.ocx,适用于集成PDF功能到应用程序中。 ... [详细]
  • 历经三十年的开发,Mathematica 已成为技术计算领域的标杆,为全球的技术创新者、教育工作者、学生及其他用户提供了一个领先的计算平台。最新版本 Mathematica 12.3.1 增加了多项核心语言、数学计算、可视化和图形处理的新功能。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 本文详细介绍了PHP中的多条件分支结构,包括if、elseif和else语句的使用方法。通过具体示例,解释了如何根据不同的条件执行相应的代码块,并确保每个条件只能触发一次。 ... [详细]
  • 本文介绍了如何在 C# 和 XNA 框架中实现一个自定义的 3x3 矩阵类(MMatrix33),旨在深入理解矩阵运算及其应用场景。该类参考了 AS3 Starling 和其他相关资源,以确保算法的准确性和高效性。 ... [详细]
  • Go语言实现经典排序算法:归并排序
    本文介绍如何使用Go语言实现经典的归并排序算法,探讨其原理、代码实现及性能特点。适合Golang开发者和编程爱好者。 ... [详细]
  • 深入理解Java多线程并发处理:基础与实践
    本文探讨了Java中的多线程并发处理机制,从基本概念到实际应用,帮助读者全面理解并掌握多线程编程技巧。通过实例解析和理论阐述,确保初学者也能轻松入门。 ... [详细]
  • MongoDB的核心特性与架构解析
    本文深入探讨了MongoDB的核心特性,包括其强大的查询语言、灵活的文档模型以及高效的索引机制。此外,还详细介绍了MongoDB的体系结构,解释了其文档、集合和数据库的层次关系,并对比了MongoDB与传统关系型数据库(如MySQL)的逻辑结构。 ... [详细]
  • 程序员如何优雅应对35岁职业转型?这里有深度解析
    本文探讨了程序员在职业生涯中如何通过不断学习和技能提升,优雅地应对35岁左右的职业转型挑战。我们将深入分析当前热门技术趋势,并提供实用的学习路径。 ... [详细]
  • Java中的基本数据类型与包装类解析
    本文探讨了Java编程语言中的8种基本数据类型及其对应的包装类。通过分析这些数据类型的特性和使用场景,以及自动拆装箱机制的实现原理,帮助开发者更好地理解和应用这些概念。 ... [详细]
  • 本文档介绍了如何在Visual Studio 2010环境下,利用C#语言连接SQL Server 2008数据库,并实现基本的数据操作,如增删改查等功能。通过构建一个面向对象的数据库工具类,简化了数据库操作流程。 ... [详细]
  • 本文详细介绍了Java的安装、配置、运行流程以及有效的学习方法,旨在帮助初学者快速上手Java编程。 ... [详细]
author-avatar
明睿崇
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有