热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

MSP430F5438ADC12模块应用与学习心得

在最近的实践中,我深入研究了MSP430F5438的ADC12模块。尽管该模块的功能相对简单,但通过实际操作,我对MSP430F5438A和MSP430F5438之间的差异有了更深刻的理解。本文将分享这些学习心得,并探讨如何更好地利用ADC12模块进行数据采集和处理。

1.前言

这几天实践了MSP430的ADC12功能,虽然片内AD功能比较简单但是还学出了点“门道”来,这个“门道”便是MSP430F5438A和MSP430F5438的区别。这里通过一个例子说明片内ADC的使用,首先实现UART和定时器1S溢出的功能,在上述功能的基础上每1S打印一次AD转换结果,转换通道定向到通道11,该通道对应AVCC和AVSS插值的一半,由于AVCC和LDO的输出之间只有一个电感连接,可以理解转换的结果为LDO输出电压的一般,若扩大两倍便是LDO的实际输出结果,在本文所用的开发板LDO输出为3.3V,所有打印的结果越接近3.3V越好。

2.代码实现和输出结果

代码实现
// 时钟默认情况
// FLL时钟      FLL选择 XT1
// 辅助时钟     ACLK选择 XT1          32768Hz
// 主系统时钟   MCLK选择 DCOCLKDIV    8000000Hz
// 子系统时钟   SMCLK选择 DCOCLKDIV   8000000Hz
// TA1选择ACLK,最大计数值为32768,中断频率为1HZ

#include 
#include 
#include 
void clock_config(void);
void select_xt1(void);
void dco_config(void);
void adc12_config(void);
void uart_config(void);
char second_flag  = 0;                          // 1S标志

int main(void)
{
    clock_config();                             // 初始化时钟
    adc12_config();                             // 初始化ADC12
    uart_config();

    TA1CCTL0 = CCIE;                            // 使能TA1CCR0,比较匹配中断
    TA1CCR0 = 32768;                            // 初始化最大值,发生比较匹配中断频率 32768/32768 = 1Hz
    TA1CTL = TASSEL_1 + MC_1 + TACLR;           // 选择ACLK,最大值为CCR0,清除计数值

    _EINT();                                    // 初始化全局中断

    while(1)
    {
        if( second_flag )
        {
            second_flag = 0;                        // 1s时间到

            ADC12CTL0 |= ADC12SC;                   // 启动转换
            while ( !(ADC12IFG & BIT0) );           // 等待转换完成

            // 被转换的通道为通道11 (AVCC-AVSS)/2;
            // 此时转换的精度为12位——4096
            // AVCC通过一个电感和LDO的输出端连接
            // 打印LDO输出电压,保留3位精度
            float ldo_voltage = ADC12MEM0  / 4096.0 * 3.3 * 2;
            printf("LDO Voltage %.3f\r\n",ldo_voltage);
        }
    }
}

void clock_config(void)
{
    WDTCTL = WDTPW + WDTHOLD;                   // 停止看门狗
    select_xt1();                               // 选择XT1
    dco_config();                               // ACLK = XT1 = 32.768K
                                                // MCLK = SMCLK = 8000K
}

void select_xt1(void)
{
    // 启动XT1
    P7SEL |= 0x03;                              // P7.0 P7.1 外设功能
    UCSCTL6 &= ~(XT1OFF);                       // XT1打开
    UCSCTL6 |= XCAP_3;                          // 内部电容
    do
    {
        UCSCTL7 &= ~XT1LFOFFG;                  // 清楚XT1错误标记
    }while (UCSCTL7&XT1LFOFFG);                 // 检测XT1错误标记
}

void dco_config(void)
{
    __bis_SR_register(SCG0);                    // 禁止FLL功能
    UCSCTL0 = 0x0000;                           // Set lowest possible DCOx, MODx
    UCSCTL1 = DCORSEL_5;                        // DCO最大频率为16MHz
    UCSCTL2 = FLLD_1 + 243;                     // 设置DCO频率为8MHz
                                                // MCLK = SMCLK= Fdcoclkdiv = (N+1)X(Ffllrefclk/n)
                                                // N为唯一需要计算的值
                                                // Ffllrefclk FLL参考时钟,默认为XT1
                                                // n取默认值,此时为1
                                                // (243 + 1) * 32768 = 8MHz
    __bic_SR_register(SCG0);                    // 使能FLL功能

    // 必要延时
    __delay_cycles(250000);

    // 清楚错误标志位
    do
    {
        UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + XT1HFOFFG + DCOFFG);
                                                // 清除所有振荡器错误标志位
        SFRIFG1 &= ~OFIFG;                      // 清除振荡器错误
    }while (SFRIFG1&OFIFG);                     // 等待清楚完成
}

void adc12_config(void)
{
    // 只有在ADC12ENC复位的情况下才可以操作
    // ADC12SHT1X ADC12SHT0X ADC12MSC ADC12REF2_5V ADC12REFON ADC12ON
    ADC12CTL0 &= ~ADC12ENC;

    // 设置采样保持时间,最大时间周期以提高转换精度
    // 注意MSP430F5438没有REF模块,片内基准无效
    // 操作ADC12REF2_5V ,ADC12REFON并无意义
    ADC12CTL0 = ADC12SHT0_15 + ADC12SHT1_15 + ADC12ON;
//    ADC12CTL0 = ADC12SHT0_15 + ADC12SHT1_15 + ADC12ON +
//                ADC12REF2_5V + ADC12REFON;
    // 采样保持脉冲来自采样定时器
    ADC12CTL1 = ADC12SHP;
    // 关闭内部内部温度检测以降低功耗,注意或操作否则修改转换精度
    ADC12CTL2 |= ADC12TCOFF ;
    // 基准电压选择AVCC,并选择11通道——(AVCC-AVSS)/2
    ADC12MCTL0 = ADC12SREF_0 + ADC12INCH_11;

    __delay_cycles(75);
    // ADC12使能
    ADC12CTL0 |= ADC12ENC;
}

void uart_config(void)
{
    P3SEL = 0x30;                               // 选择P3.4和P3.5的复用功能

    UCA0CTL1 |= UCSWRST;                        // 软件复位
    UCA0CTL1 |= UCSSEL_1;                       // 选择ACLK时钟
    UCA0BR0 = 3;                                // 查表获得
    UCA0BR1 = 0;                                // UCA0BRX和UCA0MCTL数值
    UCA0MCTL |= UCBRS_3 + UCBRF_0;              //
    UCA0CTL1 &= ~UCSWRST;                       //

    UCA0IE |= UCRXIE;                           // 使能接收中断
}

int putchar(int ch)
{
	UCA0TXBUF = ch;
	while(!(UCA0IFG & UCTXIFG));
	return ch;
}

#pragma vector=TIMER1_A0_VECTOR
__interrupt void TIMER1_A0_ISR(void)
{
    second_flag = 1;
}

图1 参考电压AVCC(3.3V)

3.一些注意点

3.1 提高采样时间

如果条件允许,可以尽可能的提高采样时间,这样转换结果可以更稳定一些。

3.2 MSP430F5438没有REF模块

现在(2013年10月)可以在TI官网上下载得到的示例代码或数据手册参考手册等,都是围绕MSP430F5438A的。但是市面上很多MCU还是MSP430F5438,其实MSP430F5438A和MSP4305438是有区别的,MSP430F5438没有REF模块,所以使用片内的2.5参考电源还是有些不稳定的因素。可以通过以下的实现测试一下,AD转换的目标依然是LDO输出。
需要修改以下几个部分的代码
第一:
ADC12CTL0 = ADC12SHT0_15 + ADC12SHT1_15 + ADC12ON; 修改为
ADC12CTL0 = ADC12SHT0_15 + ADC12SHT1_15 + ADC12ON +
                        ADC12REF2_5V + ADC12REFON;
使用打开片内2.5V参考电源
第二:
ADC12MCTL0 = ADC12SREF_0 + ADC12INCH_11;修改为
ADC12MCTL0 = ADC12SREF_1 + ADC12INCH_11;
转换参考电压为Vref,即修改1设置的2.5V参考电源

第三:
float ldo_voltage = ADC12MEM0 / 4096.0 * 3.3 * 2;修改为
float ldo_voltage = ADC12MEM0 / 4096.0 * 2.5 * 2;
替换转换公式,参考电压由3.3V变为2.5V

输出结果如下,结果发现LDO的输出电压为3.4V,比实际电压高0.1V。
图2 参考电压VREF(2.5V)
图3 MSP430参考手册说明


推荐阅读
  • 反向投影技术主要用于在大型输入图像中定位特定的小型模板图像。通过直方图对比,它能够识别出最匹配的区域或点,从而确定模板图像在输入图像中的位置。 ... [详细]
  • 本问题探讨了在特定条件下排列儿童队伍的方法数量。题目要求计算满足条件的队伍排列总数,并使用递推算法和大数处理技术来解决这一问题。 ... [详细]
  • 树链问题的优化解法:深度优先搜索与质因数分解
    本文介绍了一种通过深度优先搜索(DFS)和质因数分解来解决最长树链问题的方法。我们通过枚举树链上的最大公约数(GCD),将所有节点按其质因子分类,并计算每个类别的最长链,最终求得全局最长链。 ... [详细]
  • 问题描述:通过添加最少数量的括号,使得给定的括号序列变为合法,并输出最终的合法序列。数据范围:字符串长度不超过100。涉及算法:区间动态规划(Interval DP)。 ... [详细]
  • 丽江客栈选择问题
    本文介绍了一道经典的算法题,题目涉及在丽江河边的n家特色客栈中选择住宿方案。两位游客希望住在色调相同的两家客栈,并在晚上选择一家最低消费不超过p元的咖啡店小聚。我们将详细探讨如何计算满足条件的住宿方案总数。 ... [详细]
  • 本题探讨了在大数据结构背景下,如何通过整体二分和CDQ分治等高级算法优化处理复杂的时间序列问题。题目设定包括节点数量、查询次数和权重限制,并详细分析了解决方案中的关键步骤。 ... [详细]
  • JSOI2010 蔬菜庆典:树结构中的无限大权值问题
    本文探讨了 JSOI2010 的蔬菜庆典问题,主要关注如何处理非根非叶子节点的无限大权值情况。通过分析根节点及其子树的特性,提出了有效的解决方案,并详细解释了算法的实现过程。 ... [详细]
  • 本题要求实现一个函数,用于检查给定的字符串是否为回文。回文是指正向和反向读取都相同的字符串。例如,“XYZYX”和“xyzzyx”都是回文。 ... [详细]
  • 本题来自WC2014,题目编号为BZOJ3435、洛谷P3920和UOJ55。该问题描述了一棵不断生长的带权树及其节点上小精灵之间的友谊关系,要求实时计算每次新增节点后树上所有可能的朋友对数。 ... [详细]
  • 本文探讨了如何通过预处理器开关选择不同的类实现,并解决在特定情况下遇到的链接器错误。 ... [详细]
  • 本文详细介绍了8051系列微控制器的中断系统,特别是C51编译器中interrupt和using关键字的作用及其使用方法。通过深入分析这两个关键字的功能,帮助开发者更好地理解和优化中断程序的设计。 ... [详细]
  • 本文详细介绍了如何在 Objective-C 中使用 @public 和 @protected 修饰符来控制类成员的访问权限。同时,探讨了点语法和箭头操作符的区别,以及属性声明和实现的自动生成。 ... [详细]
  • 深入理解Lucene搜索机制
    本文旨在帮助读者全面掌握Lucene搜索的编写步骤、核心API及其应用。通过详细解析Lucene的基本查询和查询解析器的使用方法,结合架构图和代码示例,带领读者深入了解Lucene搜索的工作流程。 ... [详细]
  • Python处理Word文档的高效技巧
    本文详细介绍了如何使用Python处理Word文档,涵盖从基础操作到高级功能的各种技巧。我们将探讨如何生成文档、定义样式、提取表格数据以及处理超链接和图片等内容。 ... [详细]
  • 中科院学位论文排版指南
    随着毕业季的到来,许多即将毕业的学生开始撰写学位论文。本文介绍了使用LaTeX排版学位论文的方法,特别是针对中国科学院大学研究生学位论文撰写规范指导意见的最新要求。LaTeX以其精确的控制和美观的排版效果成为许多学者的首选。 ... [详细]
author-avatar
重新入梦
这个家伙很懒,什么也没留下!
Tags | 热门标签
RankList | 热门文章
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有