热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

MATLAB应用过程中遇到sigma函数——引出协方差、相关系数等概念的理解

在聚类过程中需要生成人工数据集,代码及运行结果如下:mul[0,0];%均值S1[.10;0.1];%协方差data1mvnrnd(mul,S1,300);%产生高斯分布数据%第二

在聚类过程中需要生成人工数据集,代码及运行结果如下:
mul=[0,0]; % 均值
S1=[.1 0;0 .1]; % 协方差
data1=mvnrnd(mul, S1, 300); % 产生高斯分布数据
% 第二组数据
mu2=[1.25 1.25];
S2=[.1 0;0 .1];
data2=mvnrnd(mu2,S2,300);
% 第三组数据
mu3=[-1.25;1.25];
S3=[.1 0;0 .1];
data3=mvnrnd(mu3,S3,300);
% 显示数据
plot(data1(:,1),data1(:, 2),‘bo’);
hold on;
plot(data2(:,1),data2(:,2),‘r+’);
plot(data3(:,1),data3(:,2),‘g+’);
《MATLAB应用过程中遇到sigma函数——引出协方差、相关系数等概念的理解》

但是,如何生成理想中的形状?这就需要对此代码进行深入理解:
1、什么是协方差?
标准差和方差一般是用来描述一维数据的,协方差就是一种用来度量两个随机变量关系的统计量。
《MATLAB应用过程中遇到sigma函数——引出协方差、相关系数等概念的理解》
协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义);如果结果为负值, 就说明两者是负相关;如果为0,则两者之间没有关系,就是统计上说的“相互独立”。

2、什么是协方差矩阵?

SIGMA 是需要生成的数据的自相关矩阵(相关系数矩阵)


推荐阅读
  • 深入解析Java并发之ArrayBlockingQueue
    本文详细探讨了ArrayBlockingQueue,这是一种基于数组实现的阻塞队列。ArrayBlockingQueue在初始化时需要指定容量,因此它是一个有界的阻塞队列。文章不仅介绍了其基本概念和数据结构,还深入分析了其源码实现,包括各种入队、出队、获取元素和删除元素的方法。 ... [详细]
  • 本文将详细介绍如何配置并整合MVP架构、Retrofit网络请求库、Dagger2依赖注入框架以及RxAndroid响应式编程库,构建高效、模块化的Android应用。 ... [详细]
  • This article explores the process of integrating Promises into Ext Ajax calls for a more functional programming approach, along with detailed steps on testing these asynchronous operations. ... [详细]
  • 深入理解MongoDB的SCRAM-SHA-1认证流程
    本文详细解析了MongoDB的SCRAM-SHA-1认证机制的具体步骤,旨在帮助读者深入了解这一安全认证方法的工作原理及其在实际应用中的重要性。 ... [详细]
  • Web开发实践:创建连连看小游戏
    本文详细介绍了如何在Web环境中开发一款连连看小游戏,适合初学者和技术爱好者参考。通过本文,您将了解游戏的基本结构、连线算法以及实现方法。 ... [详细]
  • 本文介绍了如何通过 ADB 命令行工具启动和停止 Android 应用。通过简单的命令,您可以轻松地控制设备上的应用运行状态。 ... [详细]
  • 本文介绍了如何使用jQuery获取浏览器窗口的可视区域高度、文档的整体高度以及宽度等关键尺寸信息,包括边界、填充和边距在内的完整尺寸。 ... [详细]
  • SPFA算法详解与应用
    当图中包含负权边时,传统的最短路径算法如Dijkstra不再适用,而Bellman-Ford算法虽然能解决问题,但其时间复杂度过高。SPFA算法作为一种改进的Bellman-Ford算法,能够在多数情况下提供更高效的解决方案。本文将详细介绍SPFA算法的原理、实现步骤及其应用场景。 ... [详细]
  • 本文详细介绍了Socket在Linux内核中的实现机制,包括基本的Socket结构、协议操作集以及不同协议下的具体实现。通过这些内容,读者可以更好地理解Socket的工作原理。 ... [详细]
  • 探索CNN的可视化技术
    神经网络的可视化在理论学习与实践应用中扮演着至关重要的角色。本文深入探讨了三种有效的CNN(卷积神经网络)可视化方法,旨在帮助读者更好地理解和优化模型。 ... [详细]
  • 我整理了HMOV四大5G旗舰的参数,可依然没能拯救我的选择困难症
    伊瓢茕茕发自凹非寺量子位报道|公众号QbitAI报道了那么多发布会,依然无法选出要换的第一部5G手机。这不,随着华为P40系列发布,目前国 ... [详细]
  • 最优化算法与matlab应用3:最速下降法
    最优化算法与matlab应用3:最速下降法最速下降法是一种沿着N维目标函数的负梯度方向搜索最小值的方法。(1)算法原理函数的负梯度表示如下:搜索步长可调整ak,通常记为(第k次迭代 ... [详细]
  • Java高级工程师学习路径及面试准备指南
    本文基于一位朋友的PDF面试经验整理,涵盖了Java高级工程师所需掌握的核心知识点,包括数据结构与算法、计算机网络、数据库、操作系统等多个方面,并提供了详细的参考资料和学习建议。 ... [详细]
  • 本文探讨了在 Python 2.7 环境下,如何有效地对大量数据(如几百 KB 的字符串)进行加密和压缩,并确保能够准确无误地解密回原始数据。 ... [详细]
  • ACM经典书籍推荐
    本文介绍了几本在算法和计算机科学领域具有重要影响力的书籍,包括由Donald E. Knuth编著的《计算机程序设计艺术》第一卷,以及潘氏兄弟的数论经典教材等。这些书籍不仅是学习相关领域的宝贵资源,也是专业人士不可或缺的参考书。 ... [详细]
author-avatar
单莼de笑脸
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有