热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

优化后的标题:洛谷P3239[HNOI2015]亚瑟王算法详解与实现

题目描述:小K不幸被LL邪教洗脑,洗脑程度之深使他决定彻底脱离这个邪教。在最终离开前,他计划再进行一次亚瑟王游戏。作为最后一战,他希望这次游戏能够尽善尽美。众所周知,亚瑟王游戏的结果很大程度上取决于运气,但通过合理的策略和算法优化,可以提高获胜的概率。本文将详细解析洛谷P3239[HNOI2015]亚瑟王问题,并提供具体的算法实现方法,帮助读者更好地理解和应用相关技术。

题目描述

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。

作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验。

本题中我们将考虑游戏的一个简化版模型。 玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后将卡牌按从前往后依次编号为 1 ~ n。本题中,顺序已经确定,即为输入的顺序。每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0

1如果这张卡牌在这一局游戏中已经发动过技能,则

1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 否则(是最后一张),结束这一轮游戏。

2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张

2.1将其以 pi的概率发动技能。

2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。

2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,考虑下一张卡牌。

请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。

输入输出格式


输入格式:

输入文件的第一行包含一个整数 T,代表测试数据组数。 接下来一共 T 组数据。 每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和游戏的轮数。 接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。

输出格式:

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。建议输出10 位小数。

输入输出样例


输入样例#1:

1

3 2

0.5000 2

0.3000 3

0.9000 1

输出样例#1:

3.2660250000

说明

一共有 13 种可能的情况:

第一轮中,第 1张卡牌发动技能;第二轮中,第 2张卡牌发动技能;

概率为 0.15,伤害为5。

第一轮中,第 1张卡牌发动技能;第二轮中,第 3张卡牌发动技能;

概率为 0.315,伤害为3。

第一轮中,第 1张卡牌发动技能;第二轮不发动技能;

概率为 0.035,伤害为2。

第一轮中,第 2张卡牌发动技能;第二轮中,第 1张卡牌发动技能;

概率为 0.075,伤害为5。

第一轮中,第 2张卡牌发动技能;第二轮中,第 3张卡牌发动技能;

概率为 0.0675,伤害为4。

第一轮中,第 2张卡牌发动技能;第二轮不发动技能;

概率为 0.0075,伤害为3。

第一轮中,第 3张卡牌发动技能;第二轮中,第 1张卡牌发动技能;

概率为 0.1575,伤害为3。

第一轮中,第 3张卡牌发动技能;第二轮中,第 2张卡牌发动技能;

概率为 0.04725,伤害为4。

第一轮中,第 3张卡牌发动技能;第二轮不发动技能;

概率为 0.11025,伤害为1。

第一轮不发动技能;第二轮中,第 1张卡牌发动技能;

概率为 0.0175,伤害为2。

第一轮不发动技能;第二轮中,第 2张卡牌发动技能;

概率为 0.00525,伤害为3。

第一轮不发动技能;第二轮中,第 3张卡牌发动技能;

概率为 0.011025,伤害为1。

第一轮不发动技能;第二轮亦不发动技能;

概率为 0.001225,伤害为0。

造成伤害的期望值为概率与对应伤害乘积之和,为 3.266025。

对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0

除非备注中有特殊说明,数据中 pi与di均为随机生成。

请注意可能存在的实数精度问题,并采取适当措施。

【spj】

题解

https://www.luogu.org/problemnew/solution/P3239

第一篇题解,写的蛮好

转载侵删。

如果能够求出每张卡牌在所有\(r\) 轮中被发动的概率\(g[]\) ,那么答案显然为:

\(\sum_{i=1}^ng[i]d[i]\)

第一步推出,\(g[1]=1-(1-p[1])^r\)

再考虑第二张:

情况一:如果第\(1\) 张牌没有发动过技能,那么第\(2\) 张牌发动技能的概率为\(1-(1-p[2])^r\)

情况二:如果第\(1\) 张牌发动过\(1\)次技能,那么在\(1\)张牌发动技能的那一轮,第\(2\)张牌绝对不会再发动技能了,因此第\(2\) 张牌发动技能的概率为\(1-(1-p[2])^{r-1}\)

结合这个例子,可以得到,对于任意的\(i>1\),在第1 张牌到第\(i?1\)张牌在所有\(r\) 轮内是否发动技能已经确定的情况下,第\(i\)张牌被发动技能的概率只取决于第\(1\) 张牌到第\(i?1\) 张牌中有多少张发动了技能。即如果有\(j\) 张发动了技能,那么在此情况下第\(i\) 张牌发动技能的概率为\(1-(1-p[i])^{r-j}\)

根据这个性质,就能想到一个DP模型:

\(f[i][j]\)表示前\(i\) 张牌中,恰好有\(j\) 张在所有\(r\)轮中被发动过的概率。

转移就比较好想了。分第iii 张牌发动与不发动两种情况:

1:发动。那么前\(i?1\) 张牌一定有\(j?1\)张牌被发动技能,因此对于第\(i\) 张牌,在\(r\) 轮中有\(j?1\) 轮已经不会再发动技能了。所以:

\(f[i][j]+=(1-(1-p[i])^{r-j+1})f[i-1][j-1]\)

2:不发动。那么前\(i?1\) 张牌中一定有\(j\) 张牌被发动技能,因此对于第\(i\) 张牌,在\(r\)轮中有\(j\) 轮是绝对不会再发动技能的。所以:

\(f[i][j]+=(1-p[i])^{r-j}f[i-1][j]\)

因此,完整的转移方程为:

\(f[i][j]=((1-(1-p[i])^{r-j+1})f[i-1][j-1])[j>0]\)

\(+((1-p[i])^{r-j}f[i-1][j])[i\neq j]\)

那么求\(g\) 就更容易了:

\(g[i]=\sum_{j=0}^{\min(i-1,r)}(1-(1-p[i])^{r-j})f[i-1][j]\)

代码:

#include
#include
#include
#include
#include
#include
#include
inline int max(int a, int b){return a > b ? a : b;}
inline int min(int a, int b){return a inline void swap(int &x, int &y){int tmp = x;x = y;y = tmp;}
inline void read(int &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch <&#39;0&#39; || ch > &#39;9&#39;) c = ch, ch = getchar();
while(ch <= &#39;9&#39; && ch >= &#39;0&#39;) x = x * 10 + ch - &#39;0&#39;, ch = getchar();
if(c == &#39;-&#39;) x = -x;
}
const int INF = 0x3f3f3f3f;
const int MAXN = 220 + 5;
const int MAXR = 132 + 5;
int t, n, r, d[MAXN];
double p[MAXN], g[MAXN], dp[MAXN][MAXN], pow[MAXN][MAXR], ans;
/*
dp[i][j]表示前i个,在r轮中有j个发动了的概率
*/
int main()
{
freopen("data.txt", "r", stdin);
read(t);
for(;t;-- t)
{
read(n), read(r), dp[0][0] = 1, ans = 0;
for(int i = 1;i <= n;++ i) pow[i][0] = 1;
for(int i = 1;i <= n;++ i)
{
scanf("%lf", &p[i]);read(d[i]);
for(int j = 1;j <= r;++ j)
pow[i][j] = pow[i][j - 1] * (1.0 - p[i]);
}
for(int i = 1;i <= n;++ i)
for(int j = min(r, i);j >= 0;-- j)
{
if(j > 0) dp[i][j] += dp[i - 1][j - 1] * (1.0 - pow[i][r - j + 1]);
if(i != j) dp[i][j] += dp[i - 1][j] * pow[i][r - j];
}
for(int i = 1;i <= n;++ i)
for(int j = min(r - 1, i - 1);j >= 0;-- j)
g[i] += dp[i - 1][j] * (1.0 - pow[i][r - j]);
for(int i = 1;i <= n;++ i) ans += g[i] * d[i];
printf("%.10lf\n", ans);
}
return 0;
}


推荐阅读
  • 深入理解Cookie与Session会话管理
    本文详细介绍了如何通过HTTP响应和请求处理浏览器的Cookie信息,以及如何创建、设置和管理Cookie。同时探讨了会话跟踪技术中的Session机制,解释其原理及应用场景。 ... [详细]
  • QUIC协议:快速UDP互联网连接
    QUIC(Quick UDP Internet Connections)是谷歌开发的一种旨在提高网络性能和安全性的传输层协议。它基于UDP,并结合了TLS级别的安全性,提供了更高效、更可靠的互联网通信方式。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • CSS 布局:液态三栏混合宽度布局
    本文介绍了如何使用 CSS 实现液态的三栏布局,其中各栏具有不同的宽度设置。通过调整容器和内容区域的属性,可以实现灵活且响应式的网页设计。 ... [详细]
  • 本文探讨了如何通过最小生成树(MST)来计算严格次小生成树。在处理过程中,需特别注意所有边权重相等的情况,以避免错误。我们首先构建最小生成树,然后枚举每条非树边,检查其是否能形成更优的次小生成树。 ... [详细]
  • 本文总结了2018年的关键成就,包括职业变动、购车、考取驾照等重要事件,并分享了读书、工作、家庭和朋友方面的感悟。同时,展望2019年,制定了健康、软实力提升和技术学习的具体目标。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 在计算机技术的学习道路上,51CTO学院以其专业性和专注度给我留下了深刻印象。从2012年接触计算机到2014年开始系统学习网络技术和安全领域,51CTO学院始终是我信赖的学习平台。 ... [详细]
  • Linux 系统启动故障排除指南:MBR 和 GRUB 问题
    本文详细介绍了 Linux 系统启动过程中常见的 MBR 扇区和 GRUB 引导程序故障及其解决方案,涵盖从备份、模拟故障到恢复的具体步骤。 ... [详细]
  • 本文介绍了如何使用jQuery根据元素的类型(如复选框)和标签名(如段落)来获取DOM对象。这有助于更高效地操作网页中的特定元素。 ... [详细]
  • 导航栏样式练习:项目实例解析
    本文详细介绍了如何创建一个具有动态效果的导航栏,包括HTML、CSS和JavaScript代码的实现,并附有详细的说明和效果图。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 深入理解Tornado模板系统
    本文详细介绍了Tornado框架中模板系统的使用方法。Tornado自带的轻量级、高效且灵活的模板语言位于tornado.template模块,支持嵌入Python代码片段,帮助开发者快速构建动态网页。 ... [详细]
author-avatar
我是yingh_303
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有