热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

论文笔记ORBSLAM2双目与rgbd相机跟单目情况的区别

ORB-SLAM2的最大贡献就是把原来的系统扩展到了双目,rgbd上,这一篇也主要讲的是怎么使用双目或者深度相机的信息,以及他们和单目的区

ORB-SLAM2的最大贡献就是把原来的系统扩展到了双目,rgbd上,这一篇也主要讲的是怎么使用双目或者深度相机的信息,以及他们和单目的区别。


I.INTRODUCTION


  1. Place Recognition是SLAM中一个对回环很重要的模块,作用是:1)检测传感器是否返回已经建过图的区域。2)修正累计误差。 3)在追踪失败之后重新定位相机。
  2. 单目SLAM的优缺点:

  • 优点:成本更低,传感器配置更简单
  • 缺点:由于无法直接获得深度信息,所以就需要利用多视图或者滤波来生成初始地图(在最开始无法进行三角化);会有尺度漂移;纯旋转时可能会失效。(如果用双目或者rgbd相机,所有的缺点都可以被解决)

  1. 主要贡献中的两个亮点:

  • RGB-D结果表明使用BA能比sota的ICP或者基于光度和深度误差最小化的方法更准。
  • 通过使用近距离和远距离立体点和单目观测结果,我们的立体结果比sota的直接法立体 SLAM 更准确。

II.RELATED WORK


双目SLAM


  • 文献[5]第一次使用了近点和远点(双目相机中,因为视差太小导致深度无法被可靠估计的点),使用了逆深度来表示远点。经验上,如果点的深度小于双目基线的40倍,那么这些点可以被可靠的三角化。
  • 用滑窗可以实现BA的常数时间复杂度,但是不能保证全局一致性(?)。对于ORB-SLAM2,自局部的关键帧使用BA来保证时间复杂度与map大小无关;在回环时,系统先对其两边,所以追踪可以继续用老地图定位,然后用全局BA来实现位姿图优化来最小化累计漂移。

RGB-D SLAM


  • ORB-SLAM2使用深度信息来给图像上提取出的特征点合成双目坐标。这样双目和rgb-d的输入的之后处理其实就可以统一了。ORB-SLAM2这里的后端用的是BA,也建立了一个全局一致的稀疏重建。因为目的就是长时间和全局一致的定位,而不是为了有很多细节的稠密重建。但是在有了很准的关键帧位姿之后,就可以融合深度地图和得到局部准确的重建;或者是在全局BA后,后处理由所有关键帧构成的深度地图,得到整个场景的准确的3D模型。

III.ORB-SLAM2

扩充传感器之后,整体的流程图为:
在这里插入图片描述1. 三个平行的主线程是:
1)追踪:每一帧都去找和局部地图的特征匹配来定位相机,并使用motion only BA来最小化重投影误差。
2)局部建图:管理局部地图并优化,使用局部BA
3)回环:检测大回环,通过位姿图优化修正累计漂移(~)。这个线程还启动了第四个线程在位姿图优化之后进行全局BA。
2. 需要用到重定位的场合:


  • 追踪失效(如遮挡)
  • 重初始化(在已经建图过的场景)
  • 回环检测

A. Monocular, Close Stereo and Far Stereo Keypoints

从前面的流程图可以看到,后续双目和rgbd其实是没有区别的。所以这里重点说双目关键点和单目关键点。


双目关键点

双目关键点的深度如果小于40倍基线长度的值,就被叫做近关键点,否则就是远关键点。近关键点可以较好的被三角化,并提供尺度,平移,旋转信息。而远关键点可以提供比较好的旋转信息,但只能有比较差的尺度和平移信息,远点用多视角进行三角化。
定义:(uL,vL,uR)(u_L, v_L, u_R)(uL,vL,uR)表示。前两个就是在左图像的特征点坐标,uRu_RuR是在右图像匹配特征点的水平坐标。对于双目相机,利用双目的校正后图像进行搜索(此时极线水平,搜索很快)。对于RGB-D相机,就计算出一个虚拟的右坐标:
uR=uL−fxbdu_R = u_L - \frac{f_xb}{d}uR=uLdfxb
fxf_xfx是水平焦距,b是结构光投影和红外线相机的基线,深度传感器的不确定度就是用虚拟右坐标的不确定度表示。


单目关键点

定义: 对于ORB特征点中,那些没有对应双目匹配的,或者是没有有效深度值的特征点,取他们在左图像中的点坐标作为单目关键点,即(uL,vL)(u_L, v_L)(uL,vL)
如何三角化: 只能通过多视角三角化,不提供尺度信息,只提供旋转和平移估计。


B. System Bootstrapping

不需要像单目那样进行系统初始化了。第一帧时就可以创建一个关键帧,把它的pose设置到起点,从所有双目关键点创建出一个初始地图。


C. Bundle Adjustment with Monocular and Stereo Constraints

追踪线程:用BA优化相机位姿(motion only BA)
局部建图线程:局部BA,优化一个局部窗口内的关键帧和点
闭环之后:全局BA,优化所有关键帧和点
使用的是g2o的LM方法


Motion-only BA

最小化匹配的世界坐标系3D点Xi∈R3X^i \in \mathbb R^3XiR3和关键点x(⋅)ix^i_{(·)}x()i之间的重投影误差。对于单目关键点xmi∈R2x_m^i \in \mathbb R^2xmiR2或者双目关键点xsi∈R3x^i_s \in \mathbb R^3xsiR3, 都满足下面的式子:
{R,t}=arg⁡min⁡R,t∑ρ(∥x(⋅)i−π(⋅)(RXi+t)∥∑2)\{ R,t \} = \mathop{\arg\min_{R,t}} \sum \rho (\Vert x^i_{(·)} - \pi_{(·)}(RX^i + t) \Vert _{\sum} ^2){R,t}=argR,tminρ(x()iπ()(RXi+t)2)
这里的i就是所有匹配集合中的某一个;ρ\rhoρ就是鲁棒的Huber cost function;∑\sum是关键点尺度相关的协方差矩阵;对于投影方程π(⋅)\pi_{(·)}π(),单目和双目的都有各自的定义:

πm([XYZ])=[fxXZ+cxfyYZ+cy],πs([XYZ])=[fxXZ+cxfyYZ+cyfxX−bZ+cx]\pi_m(\begin{bmatrix} X\\ Y\\ Z\\ \end{bmatrix}) = \begin{bmatrix} f_x \frac{X}{Z} + c_x\\ f_y \frac{Y}{Z} + c_y\\ \end{bmatrix}, \pi_s(\begin{bmatrix} X\\ Y\\ Z\\ \end{bmatrix}) = \begin{bmatrix} f_x \frac{X}{Z} + c_x\\ f_y \frac{Y}{Z} + c_y\\ f_x \frac{X-b}{Z} + c_x\\\end{bmatrix}πm(XYZ)=[fxZX+cxfyZY+cy],πs(XYZ)=fxZX+cxfyZY+cyfxZXb+cx


Local BA

优化共视的关键帧KLK_LKL和这些关键帧中的所有点PLP_LPL。那些没有共视的关键帧KFK_FKF,其中被观察到的PLP_LPL对cost函数有贡献,但是在优化过程中保持不变(??)。定义χk\chi_kχk是在PLP_LPL中的点和一个关键帧k中关键点之间的匹配集合,优化问题如下:
{Xi,Rl,tl∣i∈PL,l∈KL}=arg min⁡Xi,Rl,tl∑k∈KL∪KF∑j∈χkρ(Ekj)Ekj=∥x(⋅)i−π(⋅)(RkXj+tk)∥∑2\{X^i, R_l, t_l \vert i \in P_L, l \in K_L\} = \mathop{\argmin_{X^i, R_l, t_l} \sum_{k\in K_L \cup K_F} \sum_{j \in \chi_k}\rho (E_{kj})} \\E_{kj} = \Vert x^i_{(·)} - \pi_{(·)}(R_kX^j + t_k) \Vert _{\sum} ^2{Xi,Rl,tliPL,lKL}=Xi,Rl,tlargminkKLKFjχkρ(Ekj)Ekj=x()iπ()(RkXj+tk)2


Full BA

这个就是Local BA的特例,此时所有的关键帧和地图中的所有点都会被优化,除了被固定的初始关键帧(固定是为了消除gauge freedom)。


D. Loop Closing and Full BA

对于双目和rgbd的情况,不会有尺度漂移,而且双目或者深度信息是基于刚体转换的而不是相似度(~)。
在 ORB-SLAM2 中,在位姿图之后加入了完整的 BA 优化以实现最佳解决方案。这种优化可能很耗时,所以在单独的线程中执行,这样就可以让系统继续创建地图和检测回环。但是,这让BA输出和地图当前状态的合并造成了困难。


  • 如果在优化运行时检测到新回环,将中止优化并继续闭环,这将再次启动完整的 BA 优化。
  • 当全局 BA 完成时,需要将更新的关键帧子集和由全局BA优化的点与 未更新的关键帧和在优化运行时插入的点合并(~)。这是通过将更新的关键帧的校正(即从未优化到优化的姿势的转换)通过生成树传播到未更新的关键帧来完成的。未更新的点根据应用于其参考关键帧的校正进行变换。 (~)

E. Keyframe Insertion

和单目的一样,都是尽可能多的加入关键帧,然后再去掉冗余的关键帧。
但考虑到近关键点和远关键点,这里还引入了一个新的条件:如果跟踪的近点的数量小于阈值τt\tau_tτt且这一帧可以创造至少τc\tau_cτc个近双目点,那么就插入一个新关键帧。经验值τt=100,τc=70\tau_t=100, \tau_c=70τt=100τc=70


F. Localization Mode

局部建图和回环线程是不激活的,只有追踪线程工作,而追踪线程使用视觉里程计匹配和地图点匹配。


  • 视觉里程计匹配:当前帧ORB特征点和之前帧从双目或深度信息得来的3D点的匹配。这种匹配可以对没有建图的区域能鲁棒的定位,但是有累计的漂移。
  • 地图点匹配:对现存地图的无漂移的定位

IV. EVALUATION

对于kitti的01序列(高速公路场景)来说,平移的结果是比较不好的,原因就是能被追踪的近点太少了(汽车高速运动,而相机低帧率),但角度还是能估计的比较准。和单目相比,双目的效果更好,一是因为近点更好追踪,因为从一个双目关键帧就可以创建点,而不用像单目那样弄延迟的初始化(要在俩关键帧之间匹配),双目的情况更不容易出现track lost;二是双目可以带尺度的估计地图和轨迹,没有轨迹漂移。(可以明显看出左边图中,路程后段的尺度漂移)
可以明显看出左边图中,路程后段的尺度漂移
对于EuRoC数据集,由于严重的运动模糊会使track lost出现。论文提到的一个解决办法是使用imu信息,之前在github看到有人提到的一个解决办法是,把track lost部分的图像进行锐化的预处理(没有证实过是否有效)

对于时效性。回环中关键帧的数量就可以对应出回环的耗时。关键帧越多,共视图就会越密集,回环的融合,位姿优化,全局BA也就会更加耗时。高密度的共视图会让局部地图包含更多关键帧和点,因此局部地图的追踪和局部BA会更耗时。


推荐阅读
  • FinOps 与 Serverless 的结合:破解云成本难题
    本文探讨了如何通过 FinOps 实践优化 Serverless 应用的成本管理,提出了首个 Serverless 函数总成本估计模型,并分享了多种有效的成本优化策略。 ... [详细]
  • 本文探讨了 Objective-C 中的一些重要语法特性,包括 goto 语句、块(block)的使用、访问修饰符以及属性管理等。通过实例代码和详细解释,帮助开发者更好地理解和应用这些特性。 ... [详细]
  • JavaScript中的数组是数据集合的核心结构之一,内置了多种实用的方法。掌握这些方法不仅能提高开发效率,还能显著提升代码的质量和可读性。本文将详细介绍数组的创建方式及常见操作方法。 ... [详细]
  • 本文详细介绍了Java中org.neo4j.helpers.collection.Iterators.single()方法的功能、使用场景及代码示例,帮助开发者更好地理解和应用该方法。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • 深入解析Spring Cloud Ribbon负载均衡机制
    本文详细介绍了Spring Cloud中的Ribbon组件如何实现服务调用的负载均衡。通过分析其工作原理、源码结构及配置方式,帮助读者理解Ribbon在分布式系统中的重要作用。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文详细介绍了如何构建一个高效的UI管理系统,集中处理UI页面的打开、关闭、层级管理和页面跳转等问题。通过UIManager统一管理外部切换逻辑,实现功能逻辑分散化和代码复用,支持多人协作开发。 ... [详细]
  • 本文详细解析了Python中的os和sys模块,介绍了它们的功能、常用方法及其在实际编程中的应用。 ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 本文探讨了在地理信息系统中,如何通过图层数据获取任意两条道路的交叉点坐标及其名称。文中详细介绍了实现方法和相关技术细节。 ... [详细]
  • 堆是一种常见的数据结构,广泛应用于计算机科学领域。它通常表示为一棵完全二叉树,并可通过数组实现。堆的主要特性是每个节点的值与其父节点的值之间存在特定的关系,这使得堆在优先队列和排序算法中非常有用。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • 深入解析TCP/IP五层协议
    本文详细介绍了TCP/IP五层协议模型,包括物理层、数据链路层、网络层、传输层和应用层。每层的功能及其相互关系将被逐一解释,帮助读者理解互联网通信的原理。此外,还特别讨论了UDP和TCP协议的特点以及三次握手、四次挥手的过程。 ... [详细]
author-avatar
气质朱总_206
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有