热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

零基础大数据学习指南(整套学习资料链接+项目)

目录一、编程语言部分1、JavaSE2、Scala二、大数据阶段1、Linux(基本操作)2、Hadoop(重点中的重点&#x

目录

一、编程语言部分

1、JavaSE

2、Scala

二、大数据阶段

1、Linux(基本操作)

2、Hadoop(重点中的重点)

3、Zookeeper

4、Hive(重点)

5、Flume

6、Kafka(重点)

7、HBase(重点)

8、Spark(重点中的重点)

9、Flink(重点中的重点)

三、项目阶段

四、机器学习

五、书籍

后续也会继续更新~~~~~~~~~~~

    大数据学习指南

 



本人是按照这个学习路线来的,大数据零基础学习,已找到大数据开发工作。

要从事计算机行业的工作,不管是什么工作,开发、测试、还是算法等,都是要有一门自己比较熟练的编程语言,编程语言可以是C语言、Java、C++等,只要是和你后续工作所相关的就可以(后续用到其他语言的话,你有一门语言基础了,学起来就快了)。

大数据所使用的编程语言主要是Java、Scala、Python,使用最多的还是Java,所以从JavaSE入手是最好的选择,Scala主要是后续Spark、Flink使用,在学习Spark之前把Scala学习一波,是很nice的,因为有了JavaSE的基础,学习Scala就快了,Python可以工作中用到了再学习。

给的视频链接都是b站的,因为百度云盘链接太容易失效了,而且b站上面的视频链接下面一般都有配套的文档资料,所以就不用担心没有配套资料了。


一、编程语言部分


1、JavaSE

相信学习过Java的人基本都听过刘意和毕向东,这两个老师的课程简直就是经典,讲解细致,而且理论+实战结合的很好,初学者入门学习的一剂良药,而且b站也有免费资源,最近刘意老师也出了2019年版的JavaSE视频,也给出了链接,不过15版本已经很经典了,有需要的话也可以看看19版本的

刘意JavaSE(2015版)

刘意JavaSE(2019-IDEA版)

毕向东JavaSE


2、Scala

Scala是一门多范式 (multi-paradigm) 的编程语言,Scala支持面向对象和函数式编程,最主要的是后续Spark的内容需要用到Scala,所以前面学习了JavaSE,到Spark学习之前,再把Scala学习一波,美滋滋,而且Scala可以和Java进行无缝对接,混合使用,更是爽歪歪。后续Spark学习时基本都是用的Scala,也可能是和Java结合使用,所以Spark之前建议还是先学一波Scala,而且Scala用起来真是很舒服(wordcount一行代码搞定),适合迭代式计算,对数据处理有很大帮助,不过Scala看代码很容易看懂,但是学起来还是挺难的,比如样例类(case class)用起来真是nice,但是隐式转换学起来就相对比较难。学习Scala的建议:1. 学习scala 特有的语法,2. 搞清楚scala和java区别,3. 了解如何规范的使用scala。Scala对学习Spark是很重要的(后面Flink也是要用),虽然现在很多公司还是用Java开发比较多,而且Spark是Scala写的,如果要读源码,会Scala还是很重要的(至少要看得懂代码)。

Scala主要重点包括:隐式转换和隐式参数、模式匹配、函数式编程。这里我看的是尚硅谷韩老师的Scala视频,韩老师讲的真的很不错,五星推荐,哈哈。

也许Python也是需要的,但是学习阶段,可能用Java还是比较多,面试也基本都是问Java相关的内容,所以Python后续工作会用到的话,再看看Python的内容吧。

尚硅谷韩老师Scala

 


二、大数据阶段

大数据学习路线:Linux -> Hadoop -> Zookeeper -> Hive -> Flume -> Kafka -> HBase -> Scala -> Spark -> 项目 - > Flink(Flink可以后续学习的)

        


1、Linux(基本操作)

一般我们使用的都是虚拟机来进行操作,所以要安装VM( Virtual Machine),我使用的是CentOS,所以VM和CentOS都要跟着安装好,跟着视频操作,一定要动手实践,将一些Linux基本命令熟练掌握,一些VIM编辑器的命令也要会用,做相应的一些配置,使用SecureCRT来做远程登录操作(也可以使用其他的,自己顺手就行)。再强调一遍,基本操作命令尽量熟练一点,如果一下记不住,打印一些常用的,自己看看,多用多实践,慢慢就会用了。还有一些软件包的下载安装卸载等,跟着操作一遍,熟悉下,后续都会使用,Shell编程可以后续补。

    视频:

    如果想了解下shell(后面乌班图的可以选择不看)

    没有shell讲解


2、Hadoop(重点中的重点)

Hadoop是一个分布式系统基础框架,用于主要解决海量数据的存储和海量数据的分析计算问题,也可以说Hadoop是后续整个集群环境的基础,很多框架的使用都是会依赖于Hadoop。主要是由HDFS、MapReduce、YARN组成。这个部分安装Hadoop,Hadoop的三个主要组成部分是重点,对他们的概念要理解出来,知道他们是做什么的,搭建集群环境,伪分布式模式和完全分布式模式的搭建,重要的是完全分布式的搭建,这些部分一定要自己动手实践,自己搭建集群,仔细仔细再仔细,Hadoop的NameNode,DataNode,YARN的启动关闭命令一定要知道,以及他们的启动关闭顺序要记住,不要搞混。后续视频会有一些案例操作,跟着写代码,做测试,把基本环境都配置好,后续这个集群(完全分布式需要三台虚拟机)要一直使用。

    视频:

    我开始看过的版本

    第二个看过的版本

    2019版本


3、Zookeeper

Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。分布式安装ZK,对ZK有一定的了解就可以了,了解它的应用场景,以及内部原理,跟着做一些操作,基本上有一些了解即可。

    视频:

    我看过的版本

    尚硅谷周洋版本(听说挺好)

    2019版本


4、Hive(重点)

    Hive是基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive的安装,它的数据类型,以及它的数据定义、数据操作有较好的了解,怎么操作表(创建表、删除表,创建什么类型的表,他们有什么不同),怎么操作数据(加载数据,下载数据,对不同的表进行数据操作),对数据的查询一定要进行实践操作,以及对压缩方式和存储格式要有一些了解,用到时不懂也可以去查,最好是能理解清楚。这部分有什么面试可能会问,所以视频后续的面试讲解可以看看,理解清楚。

    视频:

    我开始看过的版本

    第二个看过的版本

    2019版本


5、Flume

Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。对于Flume,对它的组成架构,以及对Flume Agent的内部原理要理解清楚,Source、Channel、Sink一定要知道它们的各种类型以及作用,有哪些拓扑结构是常见常用的,例如一对一,单Source、多Channel、多Sink等,它们有什么作用,要理解清楚。还有一个重点,就是对Flume的配置文件一定要了解清楚,不懂的可以上官网查看案例,对于不同的情况,它的配置文件要做相应的修改,才能对数据进行采集处理,视频中的实践案例一定要跟着做。


    视频:

    我开始看过的版本

    第二个看过的版本

    2019版本

6、Kafka(重点)

Kafka是一个分布式消息队列,用来缓存数据的。比如说实时计算中可以通过Flume+Kafka对数据进行采集处理之后,Spark Streaming再使用Kafka相应的Topic中的数据,用于后续的计算使用。对于Kafka,要理解Kafka的架构,什么是Kafka,为什么需要Kafka,应用场景。基本的命令行操作要掌握,比如怎么创建删除Topic,怎么通过生产者生成数据,消费者怎么消费数据等基本操作,官网也是有一些案例可以查阅的。

    视频:

    我看过的版本

    2019版本

7、HBase(重点)

HBase是一个分布式的、基于列存储的开源数据库。HBase适合存储PB级别的海量数据,也可以说HBase是很适合大数据的存储的,它是基于列式存储数据的,列族下面可以有非常多的列,列族在创建表的时候就必须指定。所以对HBase的数据结构要有一定的理解,特别是RowKey的设计部分(因为面试被问到过,咳咳,所以点一下),对于它的原理要了解,一些基本操作也要都会,比如创建表,对表的操作,基本的API使用等。

    视频:

    我看过的版本

    2019版本

8、Spark(重点中的重点)

    Spark是快速、易用、通用的大数据分析引擎。一说到Spark,就有一种哪哪都是重点感觉,哈哈。

    Spark的组成可以看下图

        

    Spark是基于内存计算的,对于数据的处理速度要比MapReduce快很多很多,而且数据挖掘这些都是要对数据做迭代式计算,MapReduce对数据的处理方式也不适合,而Spark是可以进行迭代式计算,很适合数据挖掘等场景。Spark的Spark SQL能够对结构化数据进行处理,Spark SQL的DataFrame或DataSet可以作为分布式SQL查询引擎的作用,可以直接使用Hive上的表,对数据进行处理。Spark Streaming主要用于对应用场景中的实时流数据进行处理,支持多种数据源,DStream是Spark Streaming的基础抽象,由一系列RDD组成,每个RDD中存放着一定时间段的数据,再对数据进行处理,而且是基于内存计算,速度快,所以很适合实时数据的处理。Spark MLlib提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据 导入等额外的支持功能。对Spark的核心组件、部署模式(主要是Standalone模式和YARN模式)、通讯架构、任务调度要有一定了解(面试问到了可以说一波),Spark Shuffle要好好理解,还有内存管理要知道,对Spark的内核原理一定要好好理解,不仅面试可能要用,以后工作也是有帮助的,

    视频:

    我最开始看过的版本

    第二个看过的版本

    2019版本

9、Flink(重点中的重点)

Flink是一个框架和分布式处理引擎,用于对无界(有开始无结束)和有界(有开始有结束)数据流进行有状态计算。现在主要是阿里这种大公司使用的比较多,中国很多公司使用的还是Spark居多,而且Flink基本上都是和Spark很多功能大体上一样的,但是以后Flink和Spark孰强孰弱还有待时间的考验,不过Flink近几年越来越火了这是事实,所以如果有时间有精力的话,可以学一学Flink相关的内容也是很不错的。Spark和Flink主要都是在数据处理方面应用,在数据处理方面的话,离线数据处理:Flink暂时比不上Spark,Spark SQL优点在于可以和Hive进行无缝连接,Spark SQL可以直接使用Hive中的表;Flink暂时做不到这一步,因为官方不支持这一操作,Flink只能将数据读取成自己的表,不能直接使用Hive中的表。对于实时数据的处理:Flink和Spark可以说是平分秋色吧,而且Flink是以事件为驱动对数据进行处理,而Spark是以事件为驱动对数据进行处理,在一些应用场景中,也许Flink的效果比Spark的效果还要好些,因为Flink对数据更加的敏感。比如一秒钟如果触发了成千上万个事件,那么时间驱动型就很难对数据做细致的计算,而事件驱动型可以以事件为单位,一个个事件进行处理,相比而言延迟更低,处理效果更好。还是那句话,虽然现在使用的公司较少,但是有时间接触学习下,也是没有坏处的。

    视频:

    我看的版本(基础+项目)

三、项目阶段

    其实尚硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。

    根据自己情况,选择两到三个项目重点跟着做,理解透彻一点

大数据实战项目   

    滴滴系统:Kafka+Storm

    友盟统计项目:Hive

    YouTube项目:Hive   

    电商数据分析平台项目:Spark   

    电信客服项目:Hadoop

    微博项目:HBase

    大数据离线平台:Hadoop+Flume+Hive+HBase

    电商数仓项目:Hadoop+Zookeeper+Hive+Flume+Kafka+Spark

    在线教育项目:Hadoop+Flume+Kafka+Hive+MySQL+Spark

    基于阿里云搭建数据仓库(离线):ECS(日志生产服务器)+Flume+DataHub+MaxCompute/DataWorks+RDS(业务数据)+QuickBI

       基于Flink的电商用户行为数据分析:Kafka+Flink

四、机器学习

这部分给一个文章链接,里面有视频+资料的链接

机器学习资料

五、书籍

    都是根据自己看过和准备的来的,所以你自己有更好的选择,根据自己的来就行

    Java

        《Java核心技术 卷Ⅰ》

    Scala

        《快学Scala》

    Linux

        《鸟叔的Linux私房菜-基础篇》

        《Linux命令行与Shell脚本编程大全》

    Hadoop

        《Hadoop权威指南》

        谷歌三大文章

            Google-Bigtable中文版:http://pan.baidu.com/s/1eQxmrVc

            Google-MapReduce中文版_1.0:http://pan.baidu.com/s/1hq7XBI8

            Google-File-System中文版_1.0:http://pan.baidu.com/s/1i3verZJ

            Google三大论文英文版:http://pan.baidu.com/s/1o6G8PGA

    Hive

        《Hive编程指南》

    Kafka

        《Kafka权威指南》

    HBase

        《HBase权威指南》

    Spark

        《Spark快速大数据分析》

        《Apache Spark源码剖析》

        《Spark MLlib机器学习》

    大概就这些,看完就需要很久了,大部分我也是需要的时候看相应的部分,所以有时间可以好好看下,不然就需要哪一部分看哪一部分,有助于学习即可。

写这篇博客时间花的不多,但是找这些这些资料花的时间确实不少,这上面的视频资料大部分都是我自己看过的,还有一些其他看过的,不过觉得帮助不是很大,就没有再放链接,这些视频有些我看了不下两遍,一遍不懂,回头就再看一遍。

如果有笔误之处,或者不足之处,欢迎指正,不胜感激~

后续也会继续更新~~~~~~~~~~~

有帮助就点个赞吧,哈哈哈哈哈

欢迎关注我的知乎专栏,也会更新大数据的资料

    大数据学习指南

 



推荐阅读
  • 在Linux系统中,原本已安装了多个版本的Python 2,并且还安装了Anaconda,其中包含了Python 3。本文详细介绍了如何通过配置环境变量,使系统默认使用指定版本的Python,以便在不同版本之间轻松切换。此外,文章还提供了具体的实践步骤和注意事项,帮助用户高效地管理和使用不同版本的Python环境。 ... [详细]
  • Kafka 是由 Apache 软件基金会开发的高性能分布式消息系统,支持高吞吐量的发布和订阅功能,主要使用 Scala 和 Java 编写。本文将深入解析 Kafka 的安装与配置过程,为程序员提供详尽的操作指南,涵盖从环境准备到集群搭建的每一个关键步骤。 ... [详细]
  • FileBeat + Flume + Kafka + HDFS + Neo4j + SparkStreaming + MySQL:【案例】三度关系推荐V1.0版本11:每周一计算最近一月主播视频评级
    一、数据计算步骤汇总下面我们通过文字梳理一下具体的数据计算步骤。第一步:历史粉丝关注数据初始化第二步:实时维护粉丝关注数据第三步:每天定 ... [详细]
  • 本文详细介绍了批处理技术的基本概念及其在实际应用中的重要性。首先,对简单的批处理内部命令进行了概述,重点讲解了Echo命令的功能,包括如何打开或关闭回显功能以及显示消息。如果没有指定任何参数,Echo命令会显示当前的回显设置。此外,文章还探讨了批处理技术在自动化任务执行、系统管理等领域的广泛应用,为读者提供了丰富的实践案例和技术指导。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • FastDFS Nginx 扩展模块的源代码解析与技术剖析
    FastDFS Nginx 扩展模块的源代码解析与技术剖析 ... [详细]
  • 在第二课中,我们将深入探讨Scala的面向对象编程核心概念及其在Spark源码中的应用。首先,通过详细的实战案例,全面解析Scala中的类和对象。作为一门纯面向对象的语言,Scala的类设计和对象使用是理解其面向对象特性的关键。此外,我们还将介绍如何通过阅读Spark源码来进一步巩固对这些概念的理解。这不仅有助于提升编程技能,还能为后续的高级应用开发打下坚实的基础。 ... [详细]
  • 字节跳动深圳研发中心安全业务团队正在火热招募人才! ... [详细]
  • 构建高可用性Spark分布式集群:大数据环境下的最佳实践
    在构建高可用性的Spark分布式集群过程中,确保所有节点之间的无密码登录是至关重要的一步。通过在每个节点上生成SSH密钥对(使用 `ssh-keygen -t rsa` 命令并保持默认设置),可以实现这一目标。此外,还需将生成的公钥分发到所有节点的 `~/.ssh/authorized_keys` 文件中,以确保节点间的无缝通信。为了进一步提升集群的稳定性和性能,建议采用负载均衡和故障恢复机制,并定期进行系统监控和维护。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 在Windows环境中优化提交Spark任务的方法与实践
    在Windows环境中优化提交Spark任务的方法与实践 ... [详细]
  • 字节Java高级岗:java开发cpu吃多线程吗
    前言抱着侥幸心理投了字节跳动后台JAVA开发岗,居然收到通知去面试,一面下整个人来都是懵逼的,不知道我对着面试官都说了些啥(捂脸~~)。侥幸一面居然过了,三天后接到二面通知,结果这 ... [详细]
  • Hadoop + Spark安装(三) —— 调hadoop
    ***************************测试hadoop及问题跟进***************************执行以下语句报错datahadoop-2.9. ... [详细]
  • 深入解析十大经典排序算法:动画演示、原理分析与代码实现
    本文深入探讨了十种经典的排序算法,不仅通过动画直观展示了每种算法的运行过程,还详细解析了其背后的原理与机制,并提供了相应的代码实现,帮助读者全面理解和掌握这些算法的核心要点。 ... [详细]
  • eureka out of service(eureka服务下线感知)
    近日,知名服务注册与服务发现工具Eureka的GitHubWiki上显示其2.0版本的开源工作已经停止。关于第二篇,我想说,这是在造谣。看起来挺吓人的。关于Eureka ... [详细]
author-avatar
Q小泓别_431
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有