热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

聊聊面试中的Java线程池

​背景关于Java的线程池我想大家肯定不会陌生,在工作中或者自己平时的学习中多多少少都会用到,那你真的有了解过底层的实现原理吗?还是说只停留在用的阶段呢?而且关于Java线程池也是

​背景

关于 Java 的线程池我想大家肯定不会陌生,在工作中或者自己平时的学习中多多少少都会用到,那你真的有了解过底层的实现原理吗?还是说只停留在用的阶段呢?而且关于 Java 线程池也是在面试中的一个高频的面试题,就像 HashMap 的实现原理一样,基本上面试必问,估计都已经被问烂大街了。


题外话:HashMap 的实现原理真的已经被问烂了,在我自身的多次面试中都不知道被问了几遍了,有的时候想想很奇怪,为什么这个被问的烂大街的问题还是会一直被问呢?但是从面试官的角度来想一下,如果一个被问的都烂大街的问题你都不好好准备对待,那怎么能好好的对待工作呢(个人愚见)。



常用的几种线程池

我们先来看下常用的几种线程池的创建方式,以及底层采用的实现原理

单个线程: Executors.newSingleThreadExecutor();

public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue())); }

缓存线程: Executors.newCachedThreadPool();

public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue()); }

固定线程Executors.newFixedThreadPool(2);

public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue()); }

定时线程: Executors.newScheduledThreadPool(3);(父类中)

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), defaultHandler); }

核心 ThreadPoolExecutor

通过上面的几个线程池的底层实现,我们可以发现底层都是通过 ThreadPoolExecutor 类来实现的,只是参数不一样,那我们就很有必要来看一下ThreadPoolExecutor 这个类了

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize <0 || maximumPoolSize <= 0 || maximumPoolSize keepAliveTime <0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }

通过 JDK 的源码我们可以看到 ThreadPoolExecutor 在 Java 的 concurrent 包下面,并且有四个构造方法,下面依次介绍下各个参数的含义:

•corePoolSize: 核心线程数的大小•maximumPoolSize: 线程池中允许的最大线程数•keepAliveTime: 空闲线程允许的最大的存活时间•unit: 存活时间的单位•workQueue: 阻塞任务队列•threadFactory: 线程工厂用来创建线程•handler: 拒绝策略,针对当队列满了时新来任务的处理方式

通过上面参数的分析,我们可以知道,单个线程的线程池就是线程池中只有一个线程负责任务,所以 corePoolSize 和 maximumPoolSize 的数值都是为 1;当这个线程出现任何异常后,线程池会自动创建一个线程,始终保持线程池中有且只有一个存活的线程。而且其他线程池也只是参数的设置不一样而已。 我们还需要知道几个常见的线程池类和接口的关系,以及一些方法,如下图


ThreadPoolExecutor 继承 AbstractExecutorServiceAbstractExecutorService 实现 ExecutorService, ExecutorService 继承 Executor



源码分析

根据源码可以发现整个线程池大致分为 3 个部分,1. 是创建 worker 线程,2. 添加任务到 workQueue; 3.worker 线程执行具体任务

创建 worker 线程,现在我们来看下核心的 execute(Runnable command) 方法,如果工作线程小于指定的核心线程数时会尝试去创建新的线程,

public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); //如果工作线程比核心线程数少,则创建新线程 if (workerCountOf(c) if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command);}

再看下addWorker(Runnable firstTask, boolean core) 方法

private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted;}

添加任务到 workQueue,这个阻塞队列内部的方法

public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node node = new Node(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() enqueue(node); c = count.getAndIncrement(); if (c + 1 notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0;}

worker 线程执行具体任务,阻塞或者超时去获取队列中的任务,进行执行

final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { //阻塞循环获取任务 while (task != null || (task = getTask()) != null) { w.lock(); if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); }}private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } }}

在刚刚创建线程池的时候,内部线程的数量是 0,当首个任务进行添加的时候,会根据参数的配置进行线程的创建,并随着任务数的增加,会逐渐创建新的线程直到不能创建新的线程为止。不能创建新的线程后,会将来的任务存放到阻塞队列中,让空闲的线程去处理。当没有空闲线程并且队列满了时候就会采用拒绝策略去丢弃或者其他策略来处理。 拒绝策略主要有四种,不同的拒绝策略有不同的使用场景,需要根据情况决定使用。

CallerRunsPolicy : 调用线程处理任务•AbortPolicy : 抛出异常•DiscardPolicy : 直接丢弃•DiscardOldestPolicy : 丢弃队列中最老的任务,执行新任务


小结

线程池在工作中的使用必不可少,如何优雅的使用线程池能很大程度的提升性能和效率。根据实际的应用场景,配置合适的线程池参数可以很大的提升项目的性能,也可以充分利用服务器的性能。

 



 



 

Java 极客技术公众号,是由一群热爱 Java 开发的技术人组建成立,专注分享原创、高质量的 Java 文章。如果您觉得我们的文章还不错,请帮忙赞赏、在看、转发支持,鼓励我们分享出更好的文章。

关注公众号,大家可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料。


 



推荐阅读
  • 并发编程 12—— 任务取消与关闭 之 shutdownNow 的局限性
    Java并发编程实践目录并发编程01——ThreadLocal并发编程02——ConcurrentHashMap并发编程03——阻塞队列和生产者-消费者模式并发编程04——闭锁Co ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 本文详细介绍了如何构建一个高效的UI管理系统,集中处理UI页面的打开、关闭、层级管理和页面跳转等问题。通过UIManager统一管理外部切换逻辑,实现功能逻辑分散化和代码复用,支持多人协作开发。 ... [详细]
  • PHP 5.5.0rc1 发布:深入解析 Zend OPcache
    2013年5月9日,PHP官方发布了PHP 5.5.0rc1和PHP 5.4.15正式版,这两个版本均支持64位环境。本文将详细介绍Zend OPcache的功能及其在Windows环境下的配置与测试。 ... [详细]
  • 本文详细介绍了 Java 中 org.apache.xmlbeans.SchemaType 类的 getBaseEnumType() 方法,提供了多个代码示例,并解释了其在不同场景下的使用方法。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • 不确定性|放入_华为机试题 HJ9提取不重复的整数
    不确定性|放入_华为机试题 HJ9提取不重复的整数 ... [详细]
  • 本文详细介绍了在企业级项目中如何优化 Webpack 配置,特别是在 React 移动端项目中的最佳实践。涵盖资源压缩、代码分割、构建范围缩小、缓存机制以及性能优化等多个方面。 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 本文详细解析了Java中hashCode()和equals()方法的实现原理及其在哈希表结构中的应用,探讨了两者之间的关系及其实现时需要注意的问题。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
author-avatar
醣荳_448
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有