热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

链表数据结构详解及其在Java中的实现方法

链表作为一种与数组并列的基本数据结构,在Java中有着广泛的应用。例如,Java中的`ArrayList`基于数组实现,而`LinkedList`则是基于链表实现。链表在遍历操作时具有独特的性能特点,特别是在插入和删除节点时表现出色。本文将详细介绍单向链表的基本概念、操作方法以及在Java中的具体实现,帮助读者深入理解链表的特性和应用场景。

一:单向链表基本介绍

链表是一种数据结构,和数组同级。比如,Java中我们使用的ArrayList,其实现原理是数组。而LinkedList的实现原理就是链表了。链表在进行循环遍历时效率不高,但是插入和删除时优势明显。下面对单向链表做一个介绍。

单向链表是一种线性表,实际上是由节点(Node)组成的,一个链表拥有不定数量的节点。其数据在内存中存储是不连续的,它存储的数据分散在内存中,每个结点只能也只有它能知道下一个结点的存储位置。由N各节点(Node)组成单向链表,每一个Node记录本Node的数据及下一个Node。向外暴露的只有一个头节点(Head),我们对链表的所有操作,都是直接或者间接地通过其头节点来进行的。 
链表的原理及java实现 
上图中最左边的节点即为头结点(Head),但是添加节点的顺序是从右向左的,添加的新节点会被作为新节点。最先添加的节点对下一节点的引用可以为空。引用是引用下一个节点而非下一个节点的对象。因为有着不断的引用,所以头节点就可以操作所有节点了。 
下图描述了单向链表存储情况。存储是分散的,每一个节点只要记录下一节点,就把所有数据串了起来,形成了一个单向链表。 
链表的原理及java实现 
节点(Node)是由一个需要储存的对象及对下一个节点的引用组成的。也就是说,节点拥有两个成员:储存的对象、对下一个节点的引用。下面图是具体的说明:

链表的原理及java实现

二、单项链表的实现

/**
 * @author Administrator
 */
public class MyLink {
    Node head = null; // 头节点

    /**
     * 链表中的节点,data代表节点的值,next是指向下一个节点的引用
     *
     * @author zjn
     *
     */
    class Node {
        Node next = null;// 节点的引用,指向下一个节点
        int data;// 节点的对象,即内容

        public Node(int data) {
            this.data = data;
        }
    }

    /**
     * 向链表中插入数据
     *
     * @param d
     */
    public void addNode(int d) {
        Node newNode = new Node(d);// 实例化一个节点
        if (head == null) {
            head = newNode;
            return;
        }
        Node tmp = head;
        while (tmp.next != null) {
            tmp = tmp.next;
        }
        tmp.next = newNode;
    }

    /**
     *
     * @param index:删除第index个节点
     * @return
     */
    public boolean deleteNode(int index) {
        if (index <1 || index > length()) {
            return false;
        }
        if (index == 1) {
            head = head.next;
            return true;
        }
        int i = 1;
        Node preNode = head;
        Node curNode = preNode.next;
        while (curNode != null) {
            if (i == index) {
                preNode.next = curNode.next;
                return true;
            }
            preNode = curNode;
            curNode = curNode.next;
            i++;
        }
        return false;
    }

    /**
     *
     * @return 返回节点长度
     */
    public int length() {
        int length = 0;
        Node tmp = head;
        while (tmp != null) {
            length++;
            tmp = tmp.next;
        }
        return length;
    }

    /**
     * 在不知道头指针的情况下删除指定节点
     *
     * @param n
     * @return
     */
    public boolean deleteNode11(Node n) {
        if (n == null || n.next == null) {
            return false;
        }
        int tmp = n.data;
        n.data = n.next.data;
        n.next.data = tmp;
        n.next = n.next.next;
        System.out.println("删除成功!");
        return true;
    }

    public void printList() {
        Node tmp = head;
        while (tmp != null) {
            System.out.println(tmp.data);
            tmp = tmp.next;
        }
    }

    public static void main(String[] args) {
        MyLink list = new MyLink();
        list.addNode(5);
        list.addNode(3);
        list.addNode(1);
        list.addNode(2);
        list.addNode(55);
        list.addNode(36);
        System.out.println("linkLength:" + list.length());
        System.out.println("head.data:" + list.head.data);
        list.printList();
        list.deleteNode(4);
        System.out.println("After deleteNode(4):");
        list.printList();
    }
}

三、链表相关的常用操作实现方法

1. 链表反转

/**
     * 链表反转
     * 
     * @param head
     * @return
     */
    public Node ReverseIteratively(Node head) {
        Node pReversedHead = head;
        Node pNode = head;
        Node pPrev = null;
        while (pNode != null) {
            Node pNext = pNode.next;
            if (pNext == null) {
                pReversedHead = pNode;
            }
            pNode.next = pPrev;
            pPrev = pNode;
            pNode = pNext;
        }
        this.head = pReversedHead;
        return this.head;
    }

2. 查找单链表的中间节点

采用快慢指针的方式查找单链表的中间节点,快指针一次走两步,慢指针一次走一步,当快指针走完时,慢指针刚好到达中间节点。

/**
     * 查找单链表的中间节点
     * 
     * @param head
     * @return
     */
    public Node SearchMid(Node head) {
        Node p = this.head, q = this.head;
        while (p != null && p.next != null && p.next.next != null) {
            p = p.next.next;
            q = q.next;
        }
        System.out.println("Mid:" + q.data);
        return q;
    }

3. 查找倒数第k个元素

采用两个指针P1,P2,P1先前移K步,然后P1、P2同时移动,当p1移动到尾部时,P2所指位置的元素即倒数第k个元素 。

/**
     * 查找倒数 第k个元素
     * 
     * @param head
     * @param k
     * @return
     */
    public Node findElem(Node head, int k) {
        if (k <1 || k > this.length()) {
            return null;
        }
        Node p1 = head;
        Node p2 = head;
        for (int i = 0; i // 前移k步
            p1 = p1.next;
        while (p1 != null) {
            p1 = p1.next;
            p2 = p2.next;
        }
        return p2;
    }

4. 对链表进行排序

/**
     * 排序
     * 
     * @return
     */
    public Node orderList() {
        Node nextNode = null;
        int tmp = 0;
        Node curNode = head;
        while (curNode.next != null) {
            nextNode = curNode.next;
            while (nextNode != null) {
                if (curNode.data > nextNode.data) {
                    tmp = curNode.data;
                    curNode.data = nextNode.data;
                    nextNode.data = tmp;
                }
                nextNode = nextNode.next;
            }
            curNode = curNode.next;
        }
        return head;
    }

5. 删除链表中的重复节点

/**
     * 删除重复节点
     */
    public void deleteDuplecate(Node head) {
        Node p = head;
        while (p != null) {
            Node q = p;
            while (q.next != null) {
                if (p.data == q.next.data) {
                    q.next = q.next.next;
                } else
                    q = q.next;
            }
            p = p.next;
        }

    }

6. 从尾到头输出单链表,采用递归方式实现

/**
     * 从尾到头输出单链表,采用递归方式实现
     * 
     * @param pListHead
     */
    public void printListReversely(Node pListHead) {
        if (pListHead != null) {
            printListReversely(pListHead.next);
            System.out.println("printListReversely:" + pListHead.data);
        }
    }

7. 判断链表是否有环,有环情况下找出环的入口节点

/**
     * 判断链表是否有环,单向链表有环时,尾节点相同
     * 
     * @param head
     * @return
     */
    public boolean IsLoop(Node head) {
        Node fast = head, slow = head;
        if (fast == null) {
            return false;
        }
        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
            if (fast == slow) {
                System.out.println("该链表有环");
                return true;
            }
        }
        return !(fast == null || fast.next == null);
    }

    /**
     * 找出链表环的入口
     * 
     * @param head
     * @return
     */
    public Node FindLoopPort(Node head) {
        Node fast = head, slow = head;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
            if (slow == fast)
                break;
        }
        if (fast == null || fast.next == null)
            return null;
        slow = head;
        while (slow != fast) {
            slow = slow.next;
            fast = fast.next;
        }
        return slow;
    }

转载自:https://blog.csdn.net/jianyuerensheng/article/details/51200274


推荐阅读
  • 深入理解Java泛型:JDK 5的新特性
    本文详细介绍了Java泛型的概念及其在JDK 5中的应用,通过具体代码示例解释了泛型的引入、作用和优势。同时,探讨了泛型类、泛型方法和泛型接口的实现,并深入讲解了通配符的使用。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • 扫描线三巨头 hdu1928hdu 1255  hdu 1542 [POJ 1151]
    学习链接:http:blog.csdn.netlwt36articledetails48908031学习扫描线主要学习的是一种扫描的思想,后期可以求解很 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 本文详细介绍了 Apache Jena 库中的 Txn.executeWrite 方法,通过多个实际代码示例展示了其在不同场景下的应用,帮助开发者更好地理解和使用该方法。 ... [详细]
  • 从 .NET 转 Java 的自学之路:IO 流基础篇
    本文详细介绍了 Java 中的 IO 流,包括字节流和字符流的基本概念及其操作方式。探讨了如何处理不同类型的文件数据,并结合编码机制确保字符数据的正确读写。同时,文中还涵盖了装饰设计模式的应用,以及多种常见的 IO 操作实例。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 本文详细介绍了Java中的访问器(getter)和修改器(setter),探讨了它们在保护数据完整性、增强代码可维护性方面的重要作用。通过具体示例,展示了如何正确使用这些方法来控制类属性的访问和更新。 ... [详细]
  • 本文提供了使用Java实现Bellman-Ford算法解决POJ 3259问题的代码示例,详细解释了如何通过该算法检测负权环来判断时间旅行的可能性。 ... [详细]
  • 题目Link题目学习link1题目学习link2题目学习link3%%%受益匪浅!-----&# ... [详细]
  • 本文探讨了 C++ 中普通数组和标准库类型 vector 的初始化方法。普通数组具有固定长度,而 vector 是一种可扩展的容器,允许动态调整大小。文章详细介绍了不同初始化方式及其应用场景,并提供了代码示例以加深理解。 ... [详细]
  • andr ... [详细]
  • 图数据库中的知识表示与推理机制
    本文探讨了图数据库及其技术生态系统在知识表示和推理问题上的应用。通过理解图数据结构,尤其是属性图的特性,可以为复杂的数据关系提供高效且优雅的解决方案。我们将详细介绍属性图的基本概念、对象建模、概念建模以及自动推理的过程,并结合实际代码示例进行说明。 ... [详细]
  • 本文介绍如何在Java项目中使用Log4j库进行日志记录。我们将详细说明Log4j库的引入、配置及简单应用,帮助开发者快速上手。 ... [详细]
  • 本题涉及一棵由N个节点组成的树(共有N-1条边),初始时所有节点均为白色。题目要求处理两种操作:一是改变某个节点的颜色(从白变黑或从黑变白);二是查询从根节点到指定节点路径上的第一个黑色节点,若无则输出-1。 ... [详细]
author-avatar
balamark_466
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有