热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

利用噪声频谱密度评估软件定义系统中的ADC

不断丰富的高速和极高速ADC以及数字处理产品正使过采样成为宽带和射频系统的实用架构方法。半导体技术进步为提升速度以及降低成本做出了诸多贡献(比如价格、功耗和电路板面积),让系统设计

不断丰富的高速和极高速 ADC 以及数字处理产品正使过采样成为宽带和射频系统的实用架构方法。半导体技术进步为提升速度以及降低成本做出了诸多贡献(比如价格、功耗和电路板面积),让系统设计人员得以探索转换和处理信号的各种方法——无论使用具有平坦噪声频谱密度的宽带转换器,或是使用在目标频段内具有高动态范围的带限Σ-Δ型转换器。这些技术改变了设计工程师对信号处理的认识,以及他们定义产品规格的方式。

噪声频谱密度 (NSD) 及其在目标频段内的分布,能够让其在数据转换过程中更好的被滤除.。

比较在不同速度下工作的系统,或者查看软件定义系统如何处理不同带宽的信号时,噪声频谱密度 (NSD) 可以说比信噪比 (SNR) 更为有用。它不能取代其他规格,但会是分析工具箱中的一个有用参数指标。

我的目标频段内有多少噪声?

数据转换器数据手册上的 SNR 表示满量程信号功率与其他所有频率的总噪声功率之比。

《利用噪声频谱密度评估软件定义系统中的 ADC》

图 1. 9 dB 调制增益的图形表示:保留全部信号,丢弃 7⁄8 噪声。

现在考虑一个简单情况来比较 SNR 和 NSD,如图 1 所示。假设 ADC 时钟频率为 75 MHz。对输出数据运行快速傅里叶变换 (FFT),图中显示的频谱为从直流到 37.5 MHz。本例中,目标信号是唯一的大信号,且碰巧位于 2 MHz 附近。对于白噪声(大部分情况下包含量化噪声和热噪声)而言,噪声均匀分布在转换器的奈奎斯特频段内,本例中为直流至 37.5 MHz。

由于目标信号在直流与 4 MHz 之间,故可相对简单地应用数字后处理以滤除或抛弃一切高于 4 MHz 的频率(仅保留红框中的内容)。这里将需要丢弃 7⁄8 噪声,保留所有信号能量,从而有效 SNR 改善 9 dB。换句话说,如果知道信号位于频段的一半中,那么事实上可以在仅消除噪声的同时,丢弃另一半频段。

这就引出了一条有用的经验法则:存在白噪声时,调制增益可使过采样信号的 SNR 额外改善 3 dB/ 倍频程。在图 1 示例中,可将此技巧应用到三个倍频程中(系数为 8),从而使 SNR 改善 9 dB。

当然,如果信号处于直流和 4 MHz 之间某处,那么就不需要使用快速 75 MSPS ADC 来捕捉信号。只需 9 MSPS 或 10 MSPS 便能满足奈奎斯特采样定理对带宽的要求。事实上,可以对 75 MSPS 采样数据进行 1/8 抽取,产生 9.375 MSPS 有效数据速率,同时保留目标频段内的噪底。

正确进行抽取很重要。如果只是每 8 个样本丢弃 7 个,那么噪声会折叠或混叠回到目标频段内,这样将得不到任何 SNR 改善。必须先滤波再抽取,才能实现调制增益。

即便如此,虽然理想的滤波器会消除一切噪声,实现理想3 dB/倍频程的调制增益,但实际滤波器不具备此类特性。在实践中,所需的滤波器阻带抑制量与试图实现多少调制增益成函数关系。另外应注意,“3 dB/ 倍频程”的经验法则是基于白噪声假设。这是一个合理的假设,但并非适用于一切情况。

一个重要的例外情况是动态范围受非线性误差或通带中的其他杂散交调分量影响。在这些情况下,“滤波并丢弃”方法不一定能滤除杂散分量,可能需要更细致的频率算法。

将 SNR 和采样速率转换为噪声频谱密度

当频谱中存在多个信号时,比如FM频段内有许多电台,情况会变得愈加复杂。若要恢复任一信号,更重要的不是数据转换器的总噪声,而是落入目标频段内的转换器噪声量。这就需要通过数字滤波和后处理来消除所有带外噪声。

有多种方法可以减少落入红框内的噪声量。其中一种是选择具有更好 SNR (噪声更低)的 ADC。或者也可以使用相同 SNR 的 ADC 并提供更快的时钟(比如 150 MHz),从而让噪声分布在更宽的带宽内,使红框内的噪声更少。

NSD 进入视野

这就提出了一个新问题:如要快速比较转换器滤除噪声的性能,有没有比 SNR 更好的规格?

此时就会用到噪声频谱密度 (NSD)。用频谱密度(通常以相对于每赫兹带宽的满量程的分贝数为单位,即 dBFS/Hz) 来刻画噪声,便可比较不同采样速率的 ADC,从而确定哪个器件在特定应用中可能具有最低噪声。

表 1 以一个 70 dB SNR 的数据转换器为例,说明随着采样速率从 100 MHz 提高到 2 GHz,NSD 有何改善。

表 1. 改变一个 70 dB SNR 的 ADC 的采样速率

《利用噪声频谱密度评估软件定义系统中的 ADC》

表 2 显示了部分极为不同的转换器的多种 SNR 和采样速率组合,但所有组合都具有相同的 NSD,因此每一种组合在 1 MHz 通道内都将具有相同的总噪声。注意,转换器的实际分辨率可能远高于有效位数,因为很多转换器希望具有额外的分辨率以确保量化噪声对 NSD 的影响可忽略不计。

表 2. 几种极为不同的转换器均在 1 MHz 带宽内提供 95 dB SNR;

SNR 计算假定为白噪底

(无杂散影响)

《利用噪声频谱密度评估软件定义系统中的 ADC》

在一个传统的单载波系统中,使用 10 GSPS 转换器捕捉 1 MHz 信号似乎很滑稽,但在多载波软件定义系统中,那可能是设计人员恰恰会做的事情。一个例子是有线机顶盒,其可能采用 2.7 GSPS 至 3 GSPS 全频调谐器来捕捉包含数百电视频道的有线信号,每个频道的带宽为数 MHz。对于数据转换器而言,噪声频谱密度的单位通常为 dBFS/Hz,即相对于每Hz满量程的 dB。这是一种相对量度,提供了对噪声电平的某种“折合到输出端”测量。还有采用 dBm/Hz 甚至 dB mV/Hz 为单位来提供更为绝对的量度,即对数据转换器噪声的“折合到输入端”测量。

SNR、满量程电压、输入阻抗和奈奎斯特带宽也可用来计算 ADC 的有效噪声系数,但这涉及到相当复杂的计算,参见 ADI 公司指南 MT-006:“ADC 噪声系数——一个经常被误解的参数”。

过采样替代方法

在较高的采样速率下使用 ADC 通常意味着较高的功耗——无论是 ADC 自身抑或后续数字处理。表 1 显示过采样对 NSD 有好处,但问题依然存在:“过采样真的值得吗?”

如表 2 所示,使用噪声较低的转换器也能实现更好的 NSD。捕捉多载波的系统需要工作在较高采样速率下,因此会对每个载波进行过采样。不过,过采样仍有很多优势。

简化抗混叠滤波——过采样会将较高频率的信号(和噪声)混叠到转换器的奈奎斯特频段内.所以为了混叠影响,这些信号需要在 AD 转换前被滤波器滤除。这意味着过滤器的过渡带必须位于最高目标捕捉频率 (FIN) 和该频率的混叠 (FSAMPLE、FIN) 之间。随着 FIN 越来越接近 FSAMPLE/2,此抗混叠滤波器的过渡带变得非常窄,需要极高阶的滤波器。2 至 4 倍过采样可大幅减少模拟域中的这个限制,并将负担置于相对容易处理的数字域中。

即便使用完美的抗混叠滤波器,要最大程度减少转换器失真产物折叠的影响也会带来不足,在 ADC 中产生杂散和其他失真产物,包括某些极高阶谐波。这些谐波还将在采样频率内折叠,可能返回带内,限制目标频段内的 SNR。在较高的采样速率下,所需频段成为奈奎斯特带宽的一小部分,因而降低了折叠发生的概率。值得一提的是,过采样还有助于可能发生带内折叠的其他系统杂散(比如器件时钟源)的频率规划。

调制增益对任何白噪声都有影响,包括热噪声和量化噪声,以及来自某些类型时钟抖动的噪声。

随着速度更高的转换器和数字处理产品的成熟,系统设计人员更频繁地使用一定量的过采样以发挥这些优势,比如噪底和 FFT。

《利用噪声频谱密度评估软件定义系统中的 ADC》

图 2. 524,288 样本 FFT 和 8192 样本 FFT 的 ADC

用户可能很希望通过检查频谱曲线以及查看噪底深度来比较转换器,如图 2 所示。进行此类比较时,重要的是需记住频谱曲线取决于快速傅里叶变换的大小。较大的 FFT 会将带宽分成更多的频率仓,每个频率仓内累积的噪声会变少。这种情况下,频谱曲线会显示较低的噪底,但这只是一个绘图伪像。事实上,噪声频谱密度并未发生改变(这是改变频谱分析仪分辨率带宽的信号处理等效情况)。

最终,如果采样速率等于 FFT 大小(或者成适当比例),那么比较噪底是可以接受的,否则可能产生误解。这里,NSD 规格可用于直接比较。

当噪底不平坦时

到目前为止,关于调制增益和过采样的讨论都假设噪声在转换器的奈奎斯特频带内是平坦的。这在很多情况下是一个合理的近似,但也有某些情况不适用该假设。

例如,之前已经提到调制增益并不适用于杂散,虽然过采样系统在频率规划和杂散处理方面可能有一些优势。此外,1/f 噪声和部分类型的振荡器相位噪声具有频谱整形性能,调制增益计算不适用于此类情况。

《利用噪声频谱密度评估软件定义系统中的 ADC》

图 3. 目标频段和噪声整形

噪声不平坦的一个重要情形是使用 Σ-Δ 型转换器时。

Σ-Δ 型调制器通过对反馈回路(量化器输出)调制,进而实现对量化噪声整形,,从而降低目标频段内的噪声,但代价是增加带外噪声,如图 3 所示。

即使不进行完整分析,也可以看到,对于 Σ-Δ 型调制器,使用 NSD 作为确定带内可用动态范围的规格尤为有效。图 4 显示的是高速带通 Σ-Δ 型 ADC 放大后的噪底曲线。在 75 MHz 目标频段内(中心频率为 225 MHz),噪声为 -160 dBFS/Hz 左右,SNR 超过 74 dBFS。

《利用噪声频谱密度评估软件定义系统中的 ADC》

图 4.AD6676 — 噪底

一个总结性范例

为了总结并强化我们已经讨论过的内容,现在看图 5 所示曲线。本例考虑五款 ADC:一款 12 位、2.5 GSPS ADC (紫色曲线);一款 14 位、1.25 GSPS ADC,时钟速度分别为 500 MSPS (红色曲线);和 1 GSPS (绿色曲线);一款 14 位、3 GSPS ADC,时钟速度为 3 GSPS (灰色曲线);一款不同的 14 位、500 MSPS ADC,时钟速度为 500 MSPS (蓝色曲线);最后是图 4 提到的带通 Σ-Δ 型 ADC。前五种情况的特征是具有近乎白色(平坦)的噪底,而 Σ-Δ 型 ADC 具有浴盆形噪声频谱密度,在目标频段内的噪声很低,如图 4 所示。

在每种情况中,采样速率保持固定,通过改变数字滤波器(其移除数字化处理后的带外噪声)的截止频率来扫描信号带宽。由此可得出几点结论。

首先,降低信号带宽会提高动态范围。然而,紫色、红色和绿色直线的斜率始终为 3 dB/ 倍频程,因为其 NSD 曲线是平坦的。蓝色曲线的斜率 (Σ-Δ型ADC) 则相当陡峭。当在通道的陡坡上扫描抽取滤波器的截止频率时,上述现象尤其明显,因为该频率的每次递增/递减都会导致滤除的噪声功率量迅速变化。

其次,各曲线具有不同的垂直偏移,这取决于转换器的 NSD。例如,红色和绿色曲线对应相同的 ADC。但绿色曲线 (1 GSPS) 高于红色曲线 (500 MSPS),因为其 NSD 比其他情况低 3 dB/Hz,其时钟是红色曲线的两倍。

图 5 显示了多种不同高速 ADC 的 SNR 与信号带宽的权衡关系:五个斜率遵从平坦噪底的 3 dB/ 倍频程调制增益,而 AD6676 由于噪底整形而表现出更陡的调制增益。

《利用噪声频谱密度评估软件定义系统中的 ADC》

图 5.不同 ADC 的 SNR 与信号带宽的关系

结语

不断丰富的高速和极高速 ADC 以及数字处理产品正使过采样成为宽带和射频系统的实用架构方法。半导体技术进步为提升速度以及降低成本做出了诸多贡献(比如价格、功耗和电路板面积),让系统设计人员得以探索转换和处理信号的各种方法——无论使用具有平坦噪声频谱密度的宽带转换器,或是使用在目标频段内具有高动态范围的带限 Σ-Δ 型转换器。这些技术改变了我们对信号处理的认识,以及我们定义产品规格的方式。思考如何捕捉信号时,工程师可能会想到去比较在不同速度下工作的系统。进行这类比较,或者查看软件定义系统如何处理不同带宽的信号时,噪声频谱密度可以说比 SNR 更为有用。它不能取代其他规格,但会是规格列表上非常有用的一个目。

 

参考文献

MT-006:“ADC噪声系数——一个经常被误解的参数”。ADI 公司,2014 年。

作者简介

David H. Robertson 自 1985 年从达特茅斯学院毕业后,便一直在 ADI 公司数据转换器部门工作。他从事过采用互补双极性、BiCMOS 和 CMOS 工艺的各类高速 DAC 和 ADC 设计。他与美国、爱尔兰、韩国、日本和中国的产品开发团队合作,历任产品工程师、设计工程师、产品线总监和模拟技术副总裁。David 目前是 ADI 公司高速转换器部门的产品与技术总监。

David 拥有 15 项转换器和混合信号电路方面的专利,参加过两次“最佳小组”国际固态电路会议晚间小组谈话,是荣获《IEEE 固态电路杂志》1997 最佳论文奖的论文的合著者。他从 2000 年至 2008 年担任 ISSCC 技术计划委员会委员,并在 2002 年至 2008 年期间担任模拟与数据转换器小组委员会主席。

Gabriele Manganaro 拥有意大利卡塔尼亚大学工程博士学位。1994 年始,他在意法半导体和德克萨斯农工大学做过研究工作。后在德州仪器做过数据转换器 IC 设计,并担任过国家半导体(美国)设计总监。自 2010 年起,他担任 ADI 公司高速数据转换器工程总监。他曾连续 7 年担任 ISSCC 数据转换器技术小组委员会委员。他先后担任过《IEEE 电路与系统论文集》的副编辑、副主编和主编。他已撰写或合作撰写 60 篇论文及 3 本著作(其中最著名的是 2011 年剑桥大学出版社出版的《高级数据转换器》),并拥有 15 项美国专利(及相应的欧洲和日本专利)和其他申请中的专利。他还是多个科学奖项的获得者,包括英国卢瑟福阿普尔顿实验室的 1995 年 CEU 奖、1999 年 IEEE 电路与系统杰出青年作者奖、2007 年 IEEE 欧洲固态电路会议最佳论文奖。他是 IEEE 院士(自 2016 年起)、IET 院士(自 2009 年起)、Sigma Xi 会员以及 IEEE 电路与系统协会理事会成员 (2016 – 2018)。


推荐阅读
  • 分布式计算助力链力实现毫秒级安全响应,确保100%数据准确性
    随着分布式计算技术的发展,其在数据存储、文件传输、在线视频、社交平台及去中心化金融等多个领域的应用日益广泛。国际知名企业如Firefox、Google、Opera、Netflix、OpenBazaar等均已采用该技术,推动了技术创新和服务升级。 ... [详细]
  • Java高级工程师学习路径及面试准备指南
    本文基于一位朋友的PDF面试经验整理,涵盖了Java高级工程师所需掌握的核心知识点,包括数据结构与算法、计算机网络、数据库、操作系统等多个方面,并提供了详细的参考资料和学习建议。 ... [详细]
  • 如何高效学习鸿蒙操作系统:开发者指南
    本文探讨了开发者如何更有效地学习鸿蒙操作系统,提供了来自行业专家的建议,包括系统化学习方法、职业规划建议以及具体的开发技巧。 ... [详细]
  • 吴石访谈:腾讯安全科恩实验室如何引领物联网安全研究
    腾讯安全科恩实验室曾两次成功破解特斯拉自动驾驶系统,并远程控制汽车,展示了其在汽车安全领域的强大实力。近日,该实验室负责人吴石接受了InfoQ的专访,详细介绍了团队未来的重点方向——物联网安全。 ... [详细]
  • 本周三大青年学术分享会即将开启
    由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ... [详细]
  • 知识图谱与图神经网络在金融科技中的应用探讨
    本文详细介绍了融慧金科AI Lab负责人张凯博士在2020爱分析·中国人工智能高峰论坛上的演讲,探讨了知识图谱与图神经网络模型如何在金融科技领域发挥重要作用。 ... [详细]
  • 我的读书清单(持续更新)201705311.《一千零一夜》2006(四五年级)2.《中华上下五千年》2008(初一)3.《鲁滨孙漂流记》2008(初二)4.《钢铁是怎样炼成的》20 ... [详细]
  • 本文总结了一次针对大厂Java研发岗位的面试经历,探讨了面试中常见的问题及其背后的原因,并分享了一些实用的面试准备资料。 ... [详细]
  • 自动驾驶中的9种传感器融合算法
    来源丨AI修炼之路在自动驾驶汽车中,传感器融合是融合来自多个传感器数据的过程。该步骤在机器人技术中是强制性的,因为它提供了更高的可靠性、冗余性以及最终的 ... [详细]
  • MySQL InnoDB 存储引擎索引机制详解
    本文深入探讨了MySQL InnoDB存储引擎中的索引技术,包括索引的基本概念、数据结构与算法、B+树的特性及其在数据库中的应用,以及索引优化策略。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • PHP函数的工作原理与性能分析
    在编程语言中,函数是最基本的组成单元。本文将探讨PHP函数的特点、调用机制以及性能表现,并通过实际测试给出优化建议。 ... [详细]
  • 8个IDC大数据基础定义解析丨IDC
    本文针对IDC数据行业相关名词术语进行解析,分为4组相关概念,希望大家读完 ... [详细]
  • Redis 是一个高性能的开源键值存储系统,支持多种数据结构。本文将详细介绍 Redis 中的六种底层数据结构及其在对象系统中的应用,包括字符串对象、列表对象、哈希对象、集合对象和有序集合对象。通过12张图解,帮助读者全面理解 Redis 的数据结构和对象系统。 ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
author-avatar
mobiledu2502891447
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有