热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

LeetCode算法挑战:最小栈的Java实现与优化

这是悦乐书的第177次更新,第179篇原创

01 看题和准备

今天介绍的是LeetCode算法题中Easy级别的第36题(顺位题号是155)。设计一个支持push,pop,top和在恒定时间内检索最小元素的堆栈。

push(x) - 将元素x推入堆栈。

pop() - 删除堆栈顶部的元素。

top() - 获取顶部元素。

getMin() - 检索堆栈中的最小元素。

例如:

MinStack minStack = new MinStack();

minStack.push(-2);

minStack.push(0);

minStack.push(-3);

minStack.getMin(); - >返回-3。

minStack.pop();

minStack.top(); - >返回0。

minStack.getMin(); - >返回-2。

本次解题使用的开发工具是eclipse,jdk使用的版本是1.8,环境是win7 64位系统,使用Java语言编写和测试。

02 第一种解法

利用整型数组和ArrayList作为栈。

入栈的时候,创建一个容量为2的数组,数组第一个元素是要入栈的元素,第二个元素是最小值,将数组添加到list中。

出栈的时候,获取list的最后一个元素,并将其移除,此时的最小值是list最后一位元素(数组)的第二个值。

获取栈顶,即是list中最后一位元素(数组)的第一个值。

最小值直接返回最小值即可。

class MinStack {

    private List stack ;
    private int min ;

    public MinStack() {
        stack = new ArrayList();
    }

    public void push(int x) {
        int[] arr = new int[2];
        arr[0] = x;
        arr[1] = stack.isEmpty() ? x : Math.min(x, min);
        min = arr[1];
        stack.add(arr);
    }

    public void pop() {
        if (!stack.isEmpty()) {
            stack.remove(stack.size()-1);
            min = stack.isEmpty() ? 0 : stack.get(stack.size()-1)[1];
        }
    }

    public int top() {
        return stack.get(stack.size()-1)[0];
    }

    public int getMin() {
        return min;
    }
}

03 第二种解法

此解法使用了栈本身和优先队列两种结构,优先队列是为了解决最小值的问题。

入栈、出栈、栈顶这些操作都可以用栈本身的方法,而最小值则是优先队列的头部元素,因为优先队列自带排序算法,在初始化时如果不指定排序方式,则默认以自然方式排序。所以在入栈时,一并也将元素放入优先队列中,而最小值就是队列的头部元素,而其他元素的顺序是不是按升序依次排列的,这个还真不一定,但是如果你通过实现Comparable接口,重写其compareTo方法,可以按照自己定义的方式来排序。

class MinStack2 {
    PriorityQueue pQueue = new PriorityQueue(); 
    Stack stack = new Stack();                    

    public MinStack2() {}

    public void push(int x) {
        pQueue.add(x);
        stack.push(x);
    }

    public void pop() {
        int trmp = stack.pop();
        pQueue.remove(trmp);
    }

    public int top() {
        return stack.peek();
    }

    public int getMin() {
        return pQueue.peek();
    }
}

04 第三种解法

使用两个栈,一个作为正常的栈进行入栈、出栈、获取栈顶操作,另外一个栈则存储最小值,每次在第一个栈进行入栈和出栈操作时,都要进行判断,对第二个栈中的最小值进行相应的操作。

class MinStack3 {
    private Stack s1 = new Stack<>();
    private Stack s2 = new Stack<>();

    public MinStack3() {}

    public void push(int x) {
        s1.push(x);
        if (s2.isEmpty() || s2.peek() >= x) {
            s2.push(x);
        }
    }

    public void pop() {
        int x = s1.pop();
        if (s2.peek() == x) s2.pop();
    }

    public int top() {
        return s1.peek();
    }

    public int getMin() {
        return s2.peek();
    }
}

05 第四种解法

较之第三种解法,此解法只使用了一个栈来完成入栈、出栈、获取栈顶和最小值的全部操作。

入栈时,如果新入栈的元素比最小值小,那么要将旧的最小值入栈,并且新的最小值是此时新入栈的元素,最后再将新元素入栈。

出栈时,如果要移除的元素正好是当前最小值,那么就需要再出栈一次,并且最小值等于第二次出栈要移除的值,因为入栈时是会将旧的最小值添加进去的,所以出栈时要做此判断。

class MinStack4 {
    int min = Integer.MAX_VALUE;
    Stack stack = new Stack();

    public void push(int x) {
        if(x <= min){          
            stack.push(min);
            min = x;
        }
        stack.push(x);
    }

    public void pop() {
        if(stack.pop() == min) {
            min=stack.pop();
        }
    }

    public int top() {
        return stack.peek();
    }

    public int getMin() {
        return min;
    }
}

06 小结

算法专题目前已连续日更超过一个月,算法题文章35+篇,公众号对话框回复【数据结构与算法】、【算法】、【数据结构】中的任一关键词,获取系列文章合集。

以上就是全部内容,如果大家有什么好的解法思路、建议或者其他问题,可以下方留言交流,点赞、留言、转发就是对我最大的回报和支持!


推荐阅读
  • 2018-2019学年第六周《Java数据结构与算法》学习总结
    本文总结了2018-2019学年第六周在《Java数据结构与算法》课程中的学习内容,重点介绍了非线性数据结构——树的相关知识及其应用。 ... [详细]
  • 主调|大侠_重温C++ ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • 深入解析 Android IPC 中的 Messenger 机制
    本文详细介绍了 Android 中基于消息传递的进程间通信(IPC)机制——Messenger。通过实例和源码分析,帮助开发者更好地理解和使用这一高效的通信工具。 ... [详细]
  • 本文详细介绍了优化DB2数据库性能的多种方法,涵盖统计信息更新、缓冲池调整、日志缓冲区配置、应用程序堆大小设置、排序堆参数调整、代理程序管理、锁机制优化、活动应用程序限制、页清除程序配置、I/O服务器数量设定以及编入组提交数调整等方面。通过这些技术手段,可以显著提升数据库的运行效率和响应速度。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
  • 本题来自WC2014,题目编号为BZOJ3435、洛谷P3920和UOJ55。该问题描述了一棵不断生长的带权树及其节点上小精灵之间的友谊关系,要求实时计算每次新增节点后树上所有可能的朋友对数。 ... [详细]
  • 本文探讨了在Java中如何正确地将多个不同的数组插入到ArrayList中,避免所有数组在插入后变得相同的问题。我们将分析代码中的问题,并提供解决方案。 ... [详细]
  • LeetCode 690:计算员工的重要性评分
    在解决LeetCode第690题时,我记录了详细的解题思路和方法。该问题要求根据员工的ID计算其重要性评分,包括直接和间接下属的重要性。本文将深入探讨如何使用哈希表(Map)来高效地实现这一目标。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 在高并发需求的C++项目中,我们最初选择了JsonCpp进行JSON解析和序列化。然而,在处理大数据量时,JsonCpp频繁抛出异常,尤其是在多线程环境下问题更为突出。通过分析发现,旧版本的JsonCpp存在多线程安全性和性能瓶颈。经过评估,我们最终选择了RapidJSON作为替代方案,并实现了显著的性能提升。 ... [详细]
  • 本文详细探讨了 org.apache.hadoop.ha.HAServiceTarget 类中的 checkFencingConfigured 方法,包括其功能、应用场景及代码示例。通过实际代码片段,帮助开发者更好地理解和使用该方法。 ... [详细]
  • Java 实现二维极点算法
    本文介绍了一种使用 Java 编程语言实现的二维极点算法。该算法用于从一组二维坐标中筛选出极点,适用于需要处理几何图形和空间数据的应用场景。文章不仅详细解释了算法的工作原理,还提供了完整的代码示例。 ... [详细]
  • PHP 实现多级树形结构:构建无限层级分类系统
    在众多管理系统中,如菜单、分类和部门等模块,通常需要处理层级结构。为了高效管理和展示这些层级数据,本文将介绍如何使用 PHP 实现多级树形结构,并提供代码示例以帮助开发者轻松实现无限分级。 ... [详细]
  • 探讨如何修复Visual Studio Code中JavaScript的智能感知和自动完成功能在特定场景下无法正常工作的问题,包括配置检查、语言模式选择以及类型注释的使用。 ... [详细]
author-avatar
不完整的记忆721_560
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有