热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

蓝桥杯—BASIC272n皇后问题(DFS)

问题描述给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对

问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,
使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、
同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,
表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0

分析:回溯法

代码

#include
#include

using namespace std;
const int MAX_N = 8;
int n;
int ans = 0;
int c = 0;
int a[MAX_N][MAX_N];
int res1[3][MAX_N*2];//记录列,左对角线,右对角线是否有相同的皇后
int res2[3][MAX_N*2];//记录列,左对角线,右对角线是否有相同的皇后
void solve2(int cur) {if(cur == n) { c++; return; }for(int j = 0; j ) {if(a[cur][j] && !res2[0][j] && !res2[1][cur+j] && !res2[2][n+cur-j]) {res2[0][j] = 1; res2[1][cur+j] = 1; res2[2][n+cur-j] = 1;solve2(cur+1);res2[0][j] = 0; res2[1][cur+j] = 0; res2[2][n+cur-j] = 0;}}return;
}
void solve1(int cur) {if(cur == n) {c = 0;solve2(0);ans += c; return;}for(int j = 0; j ) {if(a[cur][j] && !res1[0][j] && !res1[1][cur+j] && !res1[2][n+cur-j]) {a[cur][j] = 0;res1[0][j] = 1; res1[1][cur+j] = 1; res1[2][n+cur-j] = 1;solve1(cur+1);a[cur][j] = 1;res1[0][j] = 0; res1[1][cur+j] = 0; res1[2][n+cur-j] = 0;}}return;
}
int main() {while(scanf("%d", &n) == 1) {ans = 0;for(int i = 0; i )for(int j = 0; j ) scanf("%d", &a[i][j]);solve1(0);printf("%d\n", ans);}return 0;
}

以下为蓝桥杯测试系统的五组测试数据

input 1

3
1 1 0 
1 1 1 
1 1 0 

output1

0

input2

4
1 1 1 1 
1 0 1 1 
1 1 1 1 
1 1 1 1 

output2

2

input 3

5
1 1 1 1 1 
1 0 1 1 1 
1 1 1 1 1 
1 0 1 1 1 
1 1 1 1 1 

output3

12

input4

6
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 1 

output4

12

input5

7
1 1 1 1 1 1 0 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

output5

408

转:https://www.cnblogs.com/kindleheart/p/8417511.html



推荐阅读
  • 在学习了Splay树的基本查找功能后,可能会觉得它与普通的二叉查找树没有太大的区别,仅仅是通过splay操作减少了时间开销。然而,Splay树之所以被誉为“序列之王”,主要在于其强大的区间操作能力。 ... [详细]
  • 来自FallDream的博客,未经允许,请勿转载,谢谢。一天一套noi简直了.昨天勉强做完了noi2011今天教练又丢出来一套noi ... [详细]
  • 题目概述:Sereja 拥有一个由 n 个整数组成的数组 a1, a2, ..., an。他计划执行 m 项操作,这些操作包括更新数组中的特定元素、增加数组中所有元素的值,以及查询数组中的特定元素。 ... [详细]
  • 本文针对HDU 1042 N! 问题提供详细的解析和代码实现。题目要求计算给定整数N(0 ≤ N ≤ 10000)的阶乘N!。文章不仅提供了算法思路,还附上了C++语言的具体实现。 ... [详细]
  • 本文介绍了一种使用链剖分(Link-Cut Tree, LCT)来维护动态树结构的方法,特别是如何通过 LCT 来高效地管理子树的信息,如子树大小等。 ... [详细]
  • 2023年1月28日网络安全热点
    涵盖最新的网络安全动态,包括OpenSSH和WordPress的安全更新、VirtualBox提权漏洞、以及谷歌推出的新证书验证机制等内容。 ... [详细]
  • UVa 11683: 激光雕刻技术解析
    自1958年发明以来,激光技术已在众多领域得到广泛应用,包括电子设备、医疗手术工具、武器等。本文将探讨如何使用激光技术进行材料雕刻,并通过编程解决一个具体的激光雕刻问题。 ... [详细]
  • 本文详细介绍了如何在PHP中使用Memcached进行数据缓存,包括服务器连接、数据操作、高级功能等。 ... [详细]
  • egg实现登录鉴权(七):权限管理
    权限管理包含三部分:访问页面的权限,操作功能的权限和获取数据权限。页面权限:登录用户所属角色的可访问页面的权限功能权限:登录用户所属角色的可访问页面的操作权限数据权限:登录用户所属 ... [详细]
  • 题目描述:Balala Power! 时间限制:4000/2000 MS (Java/Other) 内存限制:131072/131072 K (Java/Other)。题目背景及问题描述详见正文。 ... [详细]
  • 本文介绍了使用Python和C语言编写程序来计算一个给定数值的平方根的方法。通过迭代算法,我们能够精确地得到所需的结果。 ... [详细]
  • 本文探讨了Linux环境下线程私有数据(Thread-Specific Data, TSD)的概念及其重要性,介绍了如何通过TSD技术避免多线程间全局变量冲突的问题,并提供了具体的实现方法和示例代码。 ... [详细]
  • 深入理解iOS中的链式编程:以Masonry为例
    本文通过介绍Masonry这一轻量级布局框架,探讨链式编程在iOS开发中的应用。Masonry不仅简化了Auto Layout的使用,还提高了代码的可读性和维护性。 ... [详细]
  • 本文详细介绍如何在SSM(Spring + Spring MVC + MyBatis)框架中实现分页功能。包括分页的基本概念、数据准备、前端分页栏的设计与实现、后端分页逻辑的编写以及最终的测试步骤。 ... [详细]
  • SSE图像算法优化系列三:超高速导向滤波实现过程纪要(欢迎挑战)
    自从何凯明提出导向滤波后,因为其算法的简单性和有效性,该算法得到了广泛的应用,以至于新版的matlab都将其作为标准自带的函数之一了&#x ... [详细]
author-avatar
金子祺_475
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有