热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

LPIPSmetric使用方法

https://github.com/richzhang/PerceptualS

https://github.com/richzhang/PerceptualSimilarity#1-learned-perceptual-image-patch-similarity-lpips-metric
作用评估图像斑块之间的距离。越高意味着越不同。越低意味着越相似。
真正用到的/home/zhj/PerceptualSimilarity/models/

  1. 示例脚本,取两个特定图像之间的距离,所有对应的图像在2个目录,或所有对图像在一个目录:

python compute_dists.py -p0 imgs/ex_ref.png -p1 imgs/ex_p0.png --use_gpu
Distance: 0.722
python compute_dists_dirs.py -d0 imgs/ex_dir0 -d1 imgs/ex_dir1 -o
imgs/example_dists.txt --use_gpu
1.png: 0.138
0.png: 0.722
python compute_dists_pair.py -d imgs/ex_dir_pair -o imgs/example_dists_pair.txt --use_gpu
(ex_p0.png,ex_ref.png): 0.722
(ex_ref.png,ex_p1.png): 0.138
Avg: 0.42972 +/- 0.20659

  1. Python代码
    文件test_network.py显示了示例的用法。这段代码片段就是您真正需要的。

import torch
from util import util
import models
from models import dist_model as dm
from IPython import embed
use_gpu = False # Whether to use GPU
spatial = True # Return a spatial map of perceptual distance.
# Linearly calibrated models (LPIPS)
model = models.PerceptualLoss(model='net-lin', net='alex', use_gpu=use_gpu, spatial=spatial)
# Can also set net = 'squeeze' or 'vgg'
# Off-the-shelf uncalibrated networks
# model = models.PerceptualLoss(model='net', net='alex', use_gpu=use_gpu, spatial=spatial)
# Can also set net = 'squeeze' or 'vgg'
# Low-level metrics
# model = models.PerceptualLoss(model='L2', colorspace='Lab', use_gpu=use_gpu)
# model = models.PerceptualLoss(model='ssim', colorspace='RGB', use_gpu=use_gpu)
## Example usage with dummy tensors
dummy_im0 = torch.zeros(1,3,64,64) # image should be RGB, normalized to [-1,1]
dummy_im1 = torch.zeros(1,3,64,64)
if(use_gpu):
dummy_im0 = dummy_im0.cuda()
dummy_im1 = dummy_im1.cuda()
dist = model.forward(dummy_im0,dummy_im1)
## Example usage with images
ex_ref = util.im2tensor(util.load_image('./imgs/ex_ref.png'))
ex_p0 = util.im2tensor(util.load_image('./imgs/ex_p0.png'))
ex_p1 = util.im2tensor(util.load_image('./imgs/ex_p1.png'))
if(use_gpu):
ex_ref = ex_ref.cuda()
ex_p0 = ex_p0.cuda()
ex_p1 = ex_p1.cuda()
ex_d0 = model.forward(ex_ref,ex_p0)
ex_d1 = model.forward(ex_ref,ex_p1)
if not spatial:
print('Distances: (%.3f, %.3f)'%(ex_d0, ex_d1))
else:
print('Distances: (%.3f, %.3f)'%(ex_d0.mean(), ex_d1.mean())) # The mean distance is approximately the same as the non-spatial distance

# Visualize a spatially-varying distance map between ex_p0 and ex_ref
import pylab
pylab.imshow(ex_d0[0,0,...].data.cpu().numpy())
pylab.show()

里面最重要的

import models
model = models.PerceptualLoss(model='net-lin', net='alex', use_gpu=use_gpu, gpu_ids=[0])
d = model.forward(im0,im1)

变量im0, im1a PyTorch Tensor/Variable with shape
Nx3xHxW (N patches of size HxW, RGB images scaled in [-1,+1]). This returns d, a length N Tensor/Variable.
一些选项默认在model.initialize:
net='alex':网络alex是最快的,性能最好的,并且是默认的。你可以用squeezevgg来代替。
model='net-lin':这在网络的中间特征上增加了一个线性校准。将其设置为model=net,以便对所有的特性赋予同等的权重。

Distances: (0.722, 0.138)

在这里插入图片描述

那么怎么比较GT和HR的感知距离呢?


版权声明:本文为Magic_o原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/Magic_o/article/details/106770317
推荐阅读
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 使用Numpy实现无外部库依赖的双线性插值图像缩放
    本文介绍如何仅使用Numpy库,通过双线性插值方法实现图像的高效缩放,避免了对OpenCV等图像处理库的依赖。文中详细解释了算法原理,并提供了完整的代码示例。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 在前两篇文章中,我们探讨了 ControllerDescriptor 和 ActionDescriptor 这两个描述对象,分别对应控制器和操作方法。本文将基于 MVC3 源码进一步分析 ParameterDescriptor,即用于描述 Action 方法参数的对象,并详细介绍其工作原理。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • 将Web服务部署到Tomcat
    本文介绍了如何在JDeveloper 12c中创建一个Java项目,并将其打包为Web服务,然后部署到Tomcat服务器。内容涵盖从项目创建、编写Web服务代码、配置相关XML文件到最终的本地部署和验证。 ... [详细]
  • 本文介绍如何使用阿里云的fastjson库解析包含时间戳、IP地址和参数等信息的JSON格式文本,并进行数据处理和保存。 ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • 本文详细介绍如何使用Python进行配置文件的读写操作,涵盖常见的配置文件格式(如INI、JSON、TOML和YAML),并提供具体的代码示例。 ... [详细]
  • 本文详细解析了如何使用Python语言在STM32硬件平台上实现高效的编程和快速的应用开发。通过具体的代码示例,展示了Python简洁而强大的特性。 ... [详细]
  • yikesnews第11期:微软Office两个0day和一个提权0day
    点击阅读原文可点击链接根据法国大选被黑客干扰,发送了带漏洞的文档Trumps_Attack_on_Syria_English.docx而此漏洞与ESET&FireEy ... [详细]
author-avatar
书友85467040
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有