热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

logistic回归(线性和非线性)的开发笔记

本文由编程笔记#小编为大家整理,主要介绍了logistic回归(线性和非线性)相关的知识,包括线性logistic回归的代码和数据集的分布情况。希望对你有一定的参考价值。
本文由编程笔记#小编为大家整理,主要介绍了logistic 回归(线性和非线性)相关的知识,希望对你有一定的参考价值。


一:线性logistic 回归

代码如下:


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize as opt
import seaborn as sns
#读取数据集
path = ex2data1.txt
data
= pd.read_csv(path, header=None, names=[Exam 1, Exam 2, Admitted])
#将正负数据集分开
positive = data[data[Admitted].isin([1])]
negative
= data[data[Admitted].isin([0])]
‘‘‘
#查看分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive[‘Exam 1‘], positive[‘Exam 2‘], s=60, c=‘b‘, marker=‘o‘, label=‘Admitted‘)
ax.scatter(negative[‘Exam 1‘], negative[‘Exam 2‘], s=50, c=‘r‘, marker=‘x‘, label=‘UnAdmitted‘)
ax.legend()
ax.set_xlabel(‘Exam 1 Score‘)
ax.set_ylabel(‘Exam 2 Score‘)
plt.show()
‘‘‘
#sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h))
‘‘‘
#测试sigmoid函数
nums = np.arange(-10, 11, step=1)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(nums, sigmoid(nums), ‘k‘)
plt.show()
‘‘‘
#计算损失函数值
def cost(theta, X, y):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
part1
= np.multiply(-y, np.log(sigmoid(X * theta.T)))
part2
= np.multiply((1-y), np.log(1-sigmoid(X * theta.T)))
return np.sum(part1-part2) / len(X)
#在原矩阵第1列前加一列全1
data.insert(0, ones, 1)
cols
= data.shape[1]
X
= data.iloc[:, 0:cols-1]
y
= data.iloc[:, cols-1:cols]
X
= np.array(X.values)
y
= np.array(y.values)
theta
= np.zeros(3) #这里是一个行向量
#返回梯度向量,注意是向量
def gradient(theta, X, y):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
parameters
= theta.ravel().shape[1]
grad
= np.zeros(parameters)
error
= sigmoid(X * theta.T) - y
grad
= error.T.dot(X)
grad
= grad / len(X)
return grad
#通过高级算法计算出最好的theta值
result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y))
#print(cost(result[0], X, y))
#测试所得theta的性能
#
计算原数据集的预测情况
def predict(theta, X):
theta
= np.matrix(theta)
X
= np.matrix(X)
probability
= sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability]
theta_min
= result[0]
predictions
= predict(theta_min, X)
correct
= [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy
= (sum(map(int, correct)) % len(correct))
print(accuracy = {0}%.format(accuracy))#训练集测试准确度89%
# 作图
theta_temp = theta_min
theta_temp
= theta_temp / theta_temp[2]
x
= np.arange(130, step=0.1)
y
= -(theta_temp[0] + theta_temp[1] * x)
#画出原点
sns.set(cOntext=notebook, color: #800000">‘ticks, font_scale=1.5)
sns.lmplot(
Exam 1, Exam 2, hue=Admitted, data=data,
size
=6,
fit_reg
=False,
scatter_kws
={"s": 25}
)
#画出分界线
plt.plot(x, y, grey)
plt.xlim(0,
130)
plt.ylim(0,
130)
plt.title(
Decision Boundary)
plt.show()

二:非线性logistic 回归(正则化)

代码如下:


import pandas as pd
import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt
path
= ex2data2.txt
data
= pd.read_csv(path, header=None, names=[Test 1, Test 2, Accepted])
positive
= data[data[Accepted].isin([1])]
negative
= data[data[Accepted].isin([0])]
‘‘‘
#显示原始数据的分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive[‘Test 1‘], positive[‘Test 2‘], s=50, c=‘b‘, marker=‘o‘, label=‘Accepted‘)
ax.scatter(negative[‘Test 1‘], negative[‘Test 2‘], s=50, c=‘r‘, marker=‘x‘, label=‘Unaccepted‘)
ax.legend() #显示右上角的Accepted 和 Unaccepted标签
ax.set_xlabel(‘Test 1 Score‘)
ax.set_ylabel(‘Test 2 Score‘)
plt.show()
‘‘‘
degree
= 5
x1
= data[Test 1]
x2
= data[Test 2]
#在data的第三列插入一列全1
data.insert(3, Ones, 1)
#创建多项式特征值,最高阶为4
for i in range(1, degree):
for j in range(0, i):
data[
F + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j)
#删除原数据中的test 1和test 2两列
data.drop(Test 1, axis=1, inplace=True)
data.drop(
Test 2, axis=1, inplace=True)
#sigmoid函数实现
def sigmoid(h):
return 1 / (1 + np.exp(-h))
def cost(theta, X, y, learnRate):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
first
= np.multiply(-y, np.log(sigmoid(X * theta.T)))
second
= np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T)))
reg
= (learnRate / (2 * len(X))) * np.sum(np.power(theta[:, 1:theta.shape[1]], 2))
return np.sum(first - second) / len(X) + reg
learnRate
= 1
cols
= data.shape[1]
X
= data.iloc[:, 1:cols]
y
= data.iloc[:, 0:1]
X
= np.array(X)
y
= np.array(y)
theta
= np.zeros(X.shape[1])
#计算原数据集的预测情况
def predict(theta, X):
theta
= np.matrix(theta)
X
= np.matrix(X)
probability
= sigmoid(X * theta.T)
return [1 if i > 0.5 else 0 for i in probability]
def gradientReg(theta, X, y, learnRate):
theta
= np.matrix(theta)
X
= np.matrix(X)
y
= np.matrix(y)
paramates
= int(theta.ravel().shape[1])
grad
= np.zeros(paramates)
grad
= (sigmoid(X * theta.T) - y).T * X / len(X) + (learnRate / len(X)) * theta[:, i]
grad[0]
= grad[0] - (learnRate / len(X)) * theta[:, i]
return grad
result
= opt.fmin_tnc(func=cost, x0=theta, fprime=gradientReg, args=(X, y, learnRate))
print(result)
theta_min
= np.matrix(result[0])
predictions
= predict(theta_min, X)
correct
= [1 if((a == 1 and b == 1) or(a == 0 and b == 0)) else 0 for(a, b) in zip(predictions, y)]
accuracy
= (sum(map(int, correct)) % len(correct))
print(accuracy = {0}%.format(accuracy))

 


推荐阅读
author-avatar
雪蝴蝶的诺言forever
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有