热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

开发笔记:i.MX6ULL驱动开发1——字符设备开发模板

篇首语:本文由编程笔记#小编为大家整理,主要介绍了i.MX6ULL驱动开发1——字符设备开发模板相关的知识,希望对你有一定的参考价值。 之前的几篇文章(从i.MX6UL

篇首语:本文由编程笔记#小编为大家整理,主要介绍了i.MX6ULL驱动开发1——字符设备开发模板相关的知识,希望对你有一定的参考价值。



之前的几篇文章(从i.MX6ULL嵌入式Linux开发1-uboot移植初探起),介绍了嵌入式了Linux的系统移植(uboot、内核与根文件系统)以及使用MfgTool工具将系统烧写到板子的EMMC中。

本篇开始介绍嵌入式Linux驱动开发。

内容较多,先看目录:

 


文章目录


  • 1 Linux驱动分类

  • 2 Linux驱动基本原理


    • 2.1 Linux软件分层结构

    • 2.2 Linux内核驱动操作函数

    • 2.3 Linux驱动运行方式

    • 2.4 Linux设备号


      • 2.4.1 设备号的组成

      • 2.4.2 主设备号的分配



  • 3 字符设备驱动开发模板


    • 3.1 加载与卸载

    • 3.2 注册与注销

    • 3.3 实现设备的具体操作函数

    • 3.4 添加LICENSE和作者信息


  • 4 字符设备驱动开发实验


    • 4.1 程序编写


      • 4.1.1 编写驱动程序

      • 4.1.2 编写应用程序


    • 4.2 程序编译


      • 4.2.1 编译驱动程序

      • 4.2.2 编译应用程序


    • 4.3 测试


      • 4.3.1 创建驱动模块目录

      • 4.3.2 发送文件到开发板(TFTP传输)

      • 4.3.3 开始测试

      • 4.3.4 打印冲突问题规避



  • 5 总结

 


1 Linux驱动分类

Linux中的外设驱动可以分为三大类:字符设备驱动、块设备驱动和网络设备驱动。


  • 字符设备驱动:字符设备是能够按照字节流(比如文件)进行读写操作的设备。字符设备最常见,从最简单的点灯到I2C、SPI、音频等都属于字符设备驱动

  • 块设备驱动:以存储块为基础的设备驱动,如EMMC、NAND、SD卡等。对用户而言,字符设备与块设备的访问方式没有差别。

  • 网络设备驱动:即网络驱动,它同时具有字符设备和块设备的特点,因为它是输入输出是有结构块的(报文,包,帧),但它的块的大小又不是固定的。

\'【i.MX6ULL】驱动开发1——字符设备开发模板_i.MX6ULL\'


2 Linux驱动基本原理

在Linux中一切皆文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx”的文件进行相应的操作即可实现对硬件的操作。

比如最简单的点灯功能,会有/dev/led这样的驱动文件,应用程序使用open函数来打开文件/dev/led,如果要点亮或关闭led,那么就使用write函数写入开关值,如果要获取led的状态,就用read函数从驱动中读取相应的状态,使用完成以后使用close函数关闭/dev/led这个文件。


2.1 Linux软件分层结构

Linux软件从上到下可以分层4层结构,以控制LED为例:


  • 应用层:应用程序使用库提供的open函数打开LED设备



  • 库:库根据open函数传入的参数执行“swi”指令,进而引起CPU异常,进入内核



  • 内核:内核的异常处理函数根据传入的参数找到对应的驱动程序,返回文件句柄给库,进而返回给应用层



  • 应用层得到文件句柄后,使用库提供的write或ioctl发出控制指令



  • 库根据write或ioctl函数传入的参数执行“swi”指令,进入内核



  • 内核的异常处理函数根据传入的参数找到对应的驱动程序



  • 驱动:驱动程序控制硬件,点亮LED



应用程序运行在用户空间,而Linux驱动属于内核的一部分,因此驱动运行于内核空间。当应用层通过open函数打开/dev/led 这个驱动时,因用户空间不能直接操作内核,因此会使用“系统调用”的方法来从用户空间“陷入”到内核空间,实现对底层驱动的操作。

\'【i.MX6ULL】驱动开发1——字符设备开发模板_嵌入式_02\'

比如应用程序调用了open这个函数,则在驱动程序中也应有一个对应的open的函数。


2.2 Linux内核驱动操作函数

每一个系统调用,在驱动中都有与之对应的一个驱动函数,在Linux内核文件include/linux/fs.h中有个file_operations结构体,就是Linux内核驱动操作函数集合:

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*mremap)(struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
/*省略若干行...*/
};

其中有关字符设备驱动开发中常用的函数有:


  • owner:拥有该结构体的模块的指针,一般设置为THIS_MODULE。

  • llseek函数:用于修改文件当前的读写位置。

  • read函数:用于读取设备文件。

  • write函数:用于向设备文件写入(发送)数据。

  • poll函数:是个轮询函数,用于查询设备是否可以进行非阻塞的读写。

  • unlocked_ioctl函数:提供对于设备的控制功能, 与应用程序中的 ioctl 函数对应。

  • compat_ioctl函数:与 unlocked_ioctl功能一样,区别在于在 64 位系统上,32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是unlocked_ioctl。

  • mmap函数:用于将将设备的内存映射到进程空间中(也就是用户空间),一般帧缓冲设备会使用此函数, 比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,这样就不用在用户空间和内核空间之间来回复制。

  • open函数:用于打开设备文件。

  • release函数:用于释放(关闭)设备文件,与应用程序中的 close 函数对应。

  • fasync函数:用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘中。

  • aio_fsync函数:与fasync功能类似,只是 aio_fsync 是异步刷新待处理的

2.3 Linux驱动运行方式

Linux 驱动有两种运行方式:


  • 将驱动编译进Linux内核中, 这样当Linux内核启动的时候就会自动运行驱动程序。

  • 将驱动编译成模块(扩展名为 .ko), 在Linux内核启动以后使用“insmod”命令加载驱动模块。

在驱动开发阶段一般都将其编译为模块,不需要编译整个Linux代码,方便调试驱动程序。当驱动开发完成后,根据实际需要,可以选择是否将驱动编译进Linux内核中。


2.4 Linux设备号


2.4.1 设备号的组成

Linux中每个设备都有一个设备号,设备号由主设备号和次设备号两部分组成。


  • 主设备号:表示某一个具体的驱动

  • 次设备号:表示使用这个驱动的各个设备

Linux 提供了名为dev_t的数据类型表示设备号,其本质是32位的unsigned int数据类型,其中高12位为主设备号,低2 位为次设备号,因此Linux中主设备号范围为0~4095。

在文件include/linux/kdev_t.h中提供了几个关于设备号操作的宏定义:

#define MINORBITS 20
#define MINORMASK ((1U <#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi) (((ma) <

  • MINORBITS:表示次设备号位数,一共20位

  • MINORMASK:表示次设备号掩码

  • MAJOR:用于从dev_t中获取主设备号,将dev_t右移20位即可

  • MINOR:用于从dev_t中获取次设备号,取dev_t的低20位的值即可

  • MKDEV:用于将给定的主设备号和次设备号的值组合成dev_t类型的设备号

2.4.2 主设备号的分配

主设备号的分配包括静态分配和动态分配


  • 静态分配需要手动指定设备号,并且要注意不能与已有的重复,一些常用的设备号已经被Linux内核开发者给分配掉了,使用“cat /proc/devices”命令可查看当前系统中所有已经使用了的设备号。

  • 动态分配是在注册字符设备之前先申请一个设备号,系统会自动分配一个没有被使用的设备号, 这样就避免了冲突。在卸载驱动的时候释放掉这个设备号即可。

设备号的申请函数:

/*
* dev:保存申请到的设备号
* baseminor:次设备号起始地址,一般baseminor为0 (次设备号以baseminor为起始地址地址开始递)
* count:要申请的设备号数量
* name:设备名字
*/
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)

设备号的释放函数:

/*
* from:要释放的设备号
* count:表示从from开始,要释放的设备号数量
*/
void unregister_chrdev_region(dev_t from, unsigned count)

3 字符设备驱动开发模板

3.1 加载与卸载

在编写驱动的时候需要注册模块加载和卸载这两种函数:

module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数

  • module_init()用来向Linux内核注册一个模块加载函数,参数xxx_init就是需要注册的具体函数,当使用 “insmod” 命令加载驱动的时候,xxx_init这个函数就会被调用。



  • module_exit()用来向Linux内核注册一个模块卸载函数,参数xxx_exit就是需要注册的具体函数,当使
    用“rmmod”命令卸载具体驱动的时候 xxx_exit函数就会被调用。



字符设备驱动模块加载和卸载模板如下所示:

/* 驱动入口函数 */
static int __init xxx_init(void)
{
/*入口函数内容 */
return 0;
}
/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
/*出口函数内容*/
}
/*指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);

驱动编译完成以后扩展名为.ko, 有两种命令可以加载驱动模块:


  • insmod:最简单的模块加载命令,用于加载指定的.ko模块,此命令不能解决模块的依赖关系



  • modprobe:该命令会分析模块的依赖关系,将所有的依赖模块都加载到内核中,因此更智能

    modprobe 命令默认会去/lib/modules/目录中查找模块(自制的根文件系统没有这个目录,需要手动创建)



卸载驱动也有两种命令:


  • rmmod:例如使用rmmod drv.ko来卸载 drv.ko这一个模块

  • modprobe -r:该命令除了卸载指定的驱动,还卸载其所依赖的其他模块,若这些依赖模块还在被其它模块使用,就不能使用 modprobe来卸载驱动模块!!!

3.2 注册与注销

对于字符设备驱动而言,当驱动模块加载成功以后需要注册字符设备,同样,卸载驱动模块的时候也需要注销掉字符设备。

字符设备的注册函数原型如下所示:

/* func: register_chrdev 注册字符设备
* major:主设备号
* name:设备名字,指向一串字符串
* fops:结构体 file_operations 类型指针,指向设备的操作函数集合变量
*/
static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops)

字符设备的注销函数原型如下所示:

/* func: unregister_chrdev 注销字符设备
* majo:要注销的设备对应的主设备号
* name:要注销的设备对应的设备名
*/
static inline void unregister_chrdev(unsigned int major, const char *name)

一般字符设备的注册在驱动模块的入口函数 xxx_init 中进行,字符设备的注销在驱动模块的出口函数 xxx_exit 中进行。

static struct file_operations test_fops;
/* 驱动入口函数 */
static int __init xxx_init(void)
{
/* 入口函数具体内容 */
int retvalue = 0;
/* 注册字符设备驱动 */
retvalue = register_chrdev(200, "chrtest", &test_fops);
if(retvalue <0)
{
/* 字符设备注册失败, 自行处理 */
}
return 0;
}
/* 驱动出口函数 */
static void __exit xxx_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(200, "chrtest");
}
/* 将上面两个函数指定为驱动的入口和出口函数 */
module_init(xxx_init);
module_exit(xxx_exit);

3.3 实现设备的具体操作函数

file_operations 结构体就是设备的具体操作函数。

假设对chrtest这个设备有如下两个要求:


  • 能够实现打开和关闭操作:需要实现 file_operations 中的open和release这两个函数

  • 能够实现进行读写操作:需要实现 file_operations 中的read和write这两个函数

首先是 打开(open)、读取(read)、写入(write)、释放(release) 4个基本操作

/*打开设备*/
static int chrtest_open(struct inode *inode, struct file *filp)
{
/*用户实现具体功能*/
return 0;
}
/*从设备读取*/
static ssize_t chrtest_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
/*用户实现具体功能*/
return 0;
}
/*向设备写数据*/
static ssize_t chrtest_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
/*用户实现具体功能*/
return 0;
}
/*关闭释放设备*/
static int chrtest_release(struct inode *inode, struct file *filp)
{
/*用户实现具体功能*/
return 0;
}

然后是 驱动的入口(init)和出口(exit) 函数:

/*文件操作结构体*/
static struct file_operations test_fops = {
.owner = THIS_MODULE,
.open = chrtest_open,
.read = chrtest_read,
.write = chrtest_write,
.release = chrtest_release,
};
/*驱动入口函数*/
static int __init xxx_init(void)
{
/*入口函数具体内容*/
int retvalue = 0;
/*注册字符设备驱动*/
retvalue = register_chrdev(200, "chrtest", &test_fops);
if(retvalue <0)
{
/*字符设备注册失败*/
}
return 0;
}
/*驱动出口函数*/
static void __exit xxx_exit(void)
{
/*注销字符设备驱动*/
unregister_chrdev(200, "chrtest");
}
/*指定为驱动的入口和出口函数*/
module_init(xxx_init);
module_exit(xxx_exit);

3.4 添加LICENSE和作者信息

LICENSE是必须添加的,否则编译时会报错,作者信息可加可不加。

MODULE_LICENSE() //添加模块 LICENSE 信息
MODULE_AUTHOR() //添加模块作者信息

总结一下:

\'【i.MX6ULL】驱动开发1——字符设备开发模板_字符设备_03\'


4 字符设备驱动开发实验

下面以正点原子提供的教程中的chrdevbase这个虚拟设备为例,完整的编写一个字符设备驱动模块。chrdevbase不是实际存在的一个设备,只是为了学习字符设备的开发的流程。


4.1 程序编写

需要分别编写驱动程序和应用程序。


4.1.1 编写驱动程序


  • 一些定义

#define CHRDEVBASE_MAJOR 200 /*主设备号*/
#define CHRDEVBASE_NAME "chrdevbase" /*设备名*/
static char readbuf[100]; /*读缓冲区*/
static char writebuf[100]; /*写缓冲区*/
static char kerneldata[] = {"kernel data!"}; /*内核驱动中的数据,用来测试应用程序读取该数据*/

  • 打开、关闭、读取、写入

/*
* @description : 打开设备
* @param - inode : 传递给驱动的inode
* @param - filp : 设备文件,file结构体有个叫做private_data的成员变量
* 一般在open的时候将private_data指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int chrdevbase_open(struct inode *inode, struct file *filp)
{
printk("[BSP] chrdevbase open!\\n");
return 0;
}
/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t chrdevbase_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue = 0;

/* 向用户空间发送数据 */
memcpy(readbuf, kerneldata, sizeof(kerneldata));

retvalue = copy_to_user(buf, readbuf, cnt);
if(retvalue == 0)
{
printk("[BSP] kernel senddata ok!\\n");
}
else
{
printk("[BSP] kernel senddata failed!\\n");
}

printk("[BSP] chrdevbase read!\\n");
return 0;
}
/*
* @description : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf : 要写给设备写入的数据
* @param - cnt : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t chrdevbase_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
int retvalue = 0;

/* 接收用户空间传递给内核的数据并且打印出来 */
retvalue = copy_from_user(writebuf, buf, cnt);
if(retvalue == 0)
{
printk("[BSP] kernel recevdata:%s\\n", writebuf);
}
else
{
printk("[BSP] kernel recevdata failed!\\n");
}

printk("[BSP] chrdevbase write!\\n");
return 0;
}
/*
* @description : 关闭/释放设备
* @param - filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int chrdevbase_release(struct inode *inode, struct file *filp)
{
printk("[BSP] chrdevbase release!\\n");
return 0;
}

  • 驱动加载与注销

/*
* 设备操作函数结构体
*/
static struct file_operations chrdevbase_fops = {
.owner = THIS_MODULE,
.open = chrdevbase_open,
.read = chrdevbase_read,
.write = chrdevbase_write,
.release = chrdevbase_release,
};
/*
* @description : 驱动入口函数
* @param : 无
* @return : 0 成功;其他 失败
*/
static int __init chrdevbase_init(void)
{
int retvalue = 0;
/* 注册字符设备驱动 */
retvalue = register_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME, &chrdevbase_fops);
if(retvalue <0)
{
printk("[BSP] chrdevbase driver register failed\\n");
}
printk("[BSP] chrdevbase init!\\n");
return 0;
}
/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit chrdevbase_exit(void)
{
/* 注销字符设备驱动 */
unregister_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME);
printk("[BSP] chrdevbase exit!\\n");
}
/*将上面两个函数指定为驱动的入口和出口函数*/
module_init(chrdevbase_init);
module_exit(chrdevbase_exit);

  • 最后的LIENSE与作者

/*LICENSE和作者信息*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai & xxpcb"); //本篇的程序代码在“正点原子”左大神提供的代码上进行修改

4.1.2 编写应用程序

这里把程序截取为3段分析,首先看开头:

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
static char usrdata[] = {"usr data!"}; /*应用程序中的数据,用于测试通过驱动访问写入内核*/
int main(int argc, char *argv[])
{
int fd, retvalue;
char *filename;
char readbuf[100], writebuf[100];
if(argc != 3)
{
printf("[APP] Error Usage!\\n");
return -1;
}
//参数1是驱动的文件名,用来指定驱动的位置
filename = argv[1];
//【1】打开驱动文件
fd = open(filename, O_RDWR);
if(fd <0)
{
printf("[APP] Can\'t open file %s\\n", filename);
return -1;
}
printf("[APP] open file: \'%s\' success\\n", filename);

主要是一些头文件和main函数入口,调用main函数时需要传入2个参数(实际是3个参数,函数名本身是默认的第0个参数,不需要手动指定),具体作用为:


  • 参数0:argv[0],函数名本身,这里不作用途

  • 参数1:argv[1],filename,这里不作用途

  • 参数2:argv[2],自定义的操作参数,下面函数会讲到,1为从驱动文件中读取,2为向驱动文件中写入数据

再来看具体操作:

//【2】从驱动文件读取数据
if(atoi(argv[2]) == 1)//参数1表示【读取】内核中的数据
{
retvalue = read(fd, readbuf, 50);
if(retvalue <0)
{
printf("[APP] read file \'%s\' failed!\\n", filename);
}
else
{
/* 读取成功,打印出读取成功的数据 */
printf("[APP] read data:%s\\n",readbuf);
}
}
//【3】向设备驱动写数据
if(atoi(argv[2]) == 2)//参数2表示向内核中【写入】数据
{
memcpy(writebuf, usrdata, sizeof(usrdata));
retvalue = write(fd, writebuf, 50);
if(retvalue <0)
{
printf("[APP] write file %s failed!\\n", filename);
}
else
{
printf("[APP] write data:\'%s\' to file ok\\n", writebuf);
}
}

最后是关闭设备:

//【4】关闭设备
retvalue = close(fd);
if(retvalue <0)
{
printf("[APP] Can\'t close file %s\\n", filename);
return -1;
}
printf("[APP] close file ok\\r\\n");
return 0;
}

关闭即表示不再使用该设备了(若要再使用则重新打开即可),通过关闭驱动文件来实现字符设备驱动的关闭。


4.2 程序编译


4.2.1 编译驱动程序

编译驱动,即编译chrdevbase.c这个文件为.ko 模块,使用Makefile来编译,先创建Makefile:

KERNELDIR := /home/xxpcb/myTest/imx6ull/kernel/nxp_kernel/linux-imx-rel_imx_4.1.15_2.1.0_ga
CURRENT_PATH := $(shell pwd)
obj-m := chrdevbase.o
build: kernel_modules
kernel_modules:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

各行含义:


  • KERNELDIR:开发板所使用的Linux内核源码目录

  • CURRENT_PATH:当前路径,通过运行“pwd”命令获取

  • obj-m:将 chrdevbase.c 这个文件编译为chrdevbase.ko模块

  • 具体的编译命令:后面的modules表示编译模块,-C 表示切换工作目录到KERNERLDIR目录,M表示模块源码目录

输入“make”命令即可编译,编译后会出现许多编译文件

\'【i.MX6ULL】驱动开发1——字符设备开发模板_Linux_04\'


4.2.2 编译应用程序

编译应用程序不需要内核文件参与,只有一个文件就能编译,因此直接输入指令进行编译:

arm-linux-gnueabihf-gcc chrdevbaseApp.c -o chrdevbaseApp

编译会生chrdevbaseApp,它是32位LSB格式的ARM版本可执行文件

\'【i.MX6ULL】驱动开发1——字符设备开发模板_嵌入式_07\'


4.3 测试

上一篇文章(i.MX6ULL嵌入式Linux开发6-系统烧写到eMMC与遇到的坑!)已经实现了系统移植的打包烧录工作,系统已经烧录的EMMC中了。这次我们就直接在这个基础上进行实验。


4.3.1 创建驱动模块目录

加载驱动模块,使用的modprobe命令,会从特定的目录下寻找文件。比如开发板使用的是4.1.15版的Linux内核 ,则是“/lib/modules/4.1.15”这个目录,这个目录一般是没有的,需要根据Linux内核的版本自己创建。

注意这是开发板的文件系统中的路径,可以通过串口连接进入开发板,通过linux指令创建该目录。


4.3.2 发送文件到开发板(TFTP传输)

此次测试首先需要将ubuntu中编译的文件传输到板子中运行,怎么传输呢?可以使用TFTP传输服务。

\'【i.MX6ULL】驱动开发1——字符设备开发模板_驱动_08\'

在之前的文章(i.MX6ULL嵌入式Linux开发2-uboot移植实践)中已经介绍了如何在ubuntu中搭建TFTP服务器。

搭建好TFTP服务后,开始传输文件到开发板具体的传输步骤为:


  • 开发板连接网线,与ubuntu虚拟机处于同一局域网内



  • 确保ubuntu已安装的TFTP服务,并设置了TFTP服务文件夹



  • 将ubuntu中编译好的文件复制到ubuntu的TFTP服务文件夹中!!!

    mv chrdevbaseApp ~/myTest/tftpboot/
    mv chrdevbase.ko ~/myTest/tftpboot/

    注:编译完程序,在传输到板子之前,一定要记得把文件先复制到TFTP文件夹中,否则板子获取到的可能是TFTP文件夹中的旧文件。



  • 开发板的串口中通过如下指令来将ubuntu中的文件传输到开发板中

    cd /lib/modules/4.1.15 /*确保在要下载文件的目录中,若已在,则忽略*/
    tftp -g -r chrdevbaseApp 192.168.5.101 /*获取chrdevbaseApp文件*/
    tftp -g -r chrdevbase.ko 192.168.5.101 /*获取chrdevbase.ko文件*/

    这里的-g代表get,即下载文件,-r代表remote file,即远程主机的文件名,然后是要下载的文件名,最后的远程主机ubuntu的IP地址。

    输入该指令后,可以看到文件传输进度,如下图:



\'【i.MX6ULL】驱动开发1——字符设备开发模板_Linux_09\'


4.3.3 开始测试

驱动文件chrdevbase.ko和应用文件chrdevbaseApp传输到板子中的/lib/modules/4.1.15目录后,就可以测试了。

首先使用insmod命令来加载驱动,然后使用lsmod查看当前的驱动(只有一个我们刚加载的字符驱动),再使用使用cat指令查看devices 信息,确认系统中是否已经列举了该设备,3条指令如下:

insmod chrdevbase.ko
lsmod
cat /proc/devices

具体是输出信息:

\'【i.MX6ULL】驱动开发1——字符设备开发模板_嵌入式_10\'

可以看出,系统中存在chrdevbase设备,主设备号为程序中设定的200。

驱动加载后,还要在/dev目录下创建一个对应的设备节点文件(应用程序就是通过该节点文件实现对设备的操作)。

输入如下2条命令创建/dev/chrdevbase这个设备节点文件,并查看结果:

mknod /dev/chrdevbase c 200 0
ls /dev/chrdevbase -l

\'【i.MX6ULL】驱动开发1——字符设备开发模板_字符设备_11\'

至此,字符设备驱动已经加载完成,可以测试我们的应用程序了,也就是读和写:

按照上面程序的设定,1是读,2是写:

./chrdevbaseApp /dev/chrdevbase 1
./chrdevbaseApp /dev/chrdevbase 2

  • 先来看“读测试”,注意要给chrdevbaseApp可执行的权限,否则无法运行。

\'【i.MX6ULL】驱动开发1——字符设备开发模板_i.MX6ULL_12\'

图中下部是程序输出信息,但似乎只有BSP驱动程序的的输出,没有APP应用程序的输出,应该是内核打印printk与应用的打印printf冲突了,导致APP的打印被挤掉了。


  • 再来看“写测试’’,同样也是只有BSP的打印

\'【i.MX6ULL】驱动开发1——字符设备开发模板_驱动_13\'


4.3.4 打印冲突问题规避

对于打印冲突问题,我们可以先在每个printf前后加个sleep(1)的1秒延时,这样可以先避免打印冲突。

增加延时后再次测试,打印正常:

\'【i.MX6ULL】驱动开发1——字符设备开发模板_i.MX6ULL_14\'

测试完,最后是rmmod命令卸载模块:

\'【i.MX6ULL】驱动开发1——字符设备开发模板_字符设备_15\'


5 总结

本篇介绍了嵌入式Linux驱动开发中的基础驱动——字符驱动开发的基本模式,使用了一个虚拟的字符设备驱动进行测试,了解驱动程序与应用程序之间的调用关系。

 




推荐阅读
  • 本文探讨了如何通过编程手段在Linux系统中禁用硬件预取功能。基于Intel® Core™微架构的应用性能优化需求,文章详细介绍了相关配置方法和代码实现,旨在帮助开发人员有效控制硬件预取行为,提升应用程序的运行效率。 ... [详细]
  • 在CentOS 7环境中安装配置Redis及使用Redis Desktop Manager连接时的注意事项与技巧
    在 CentOS 7 环境中安装和配置 Redis 时,需要注意一些关键步骤和最佳实践。本文详细介绍了从安装 Redis 到配置其基本参数的全过程,并提供了使用 Redis Desktop Manager 连接 Redis 服务器的技巧和注意事项。此外,还探讨了如何优化性能和确保数据安全,帮助用户在生产环境中高效地管理和使用 Redis。 ... [详细]
  • 在软件开发过程中,经常需要将多个项目或模块进行集成和调试,尤其是当项目依赖于第三方开源库(如Cordova、CocoaPods)时。本文介绍了如何在Xcode中高效地进行多项目联合调试,分享了一些实用的技巧和最佳实践,帮助开发者解决常见的调试难题,提高开发效率。 ... [详细]
  • 本文是Java并发编程系列的开篇之作,将详细解析Java 1.5及以上版本中提供的并发工具。文章假设读者已经具备同步和易失性关键字的基本知识,重点介绍信号量机制的内部工作原理及其在实际开发中的应用。 ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 如何将TS文件转换为M3U8直播流:HLS与M3U8格式详解
    在视频传输领域,MP4虽然常见,但在直播场景中直接使用MP4格式存在诸多问题。例如,MP4文件的头部信息(如ftyp、moov)较大,导致初始加载时间较长,影响用户体验。相比之下,HLS(HTTP Live Streaming)协议及其M3U8格式更具优势。HLS通过将视频切分成多个小片段,并生成一个M3U8播放列表文件,实现低延迟和高稳定性。本文详细介绍了如何将TS文件转换为M3U8直播流,包括技术原理和具体操作步骤,帮助读者更好地理解和应用这一技术。 ... [详细]
  • 本文详细解析了Java类加载系统的父子委托机制。在Java程序中,.java源代码文件编译后会生成对应的.class字节码文件,这些字节码文件需要通过类加载器(ClassLoader)进行加载。ClassLoader采用双亲委派模型,确保类的加载过程既高效又安全,避免了类的重复加载和潜在的安全风险。该机制在Java虚拟机中扮演着至关重要的角色,确保了类加载的一致性和可靠性。 ... [详细]
  • 在《Linux高性能服务器编程》一书中,第3.2节深入探讨了TCP报头的结构与功能。TCP报头是每个TCP数据段中不可或缺的部分,它不仅包含了源端口和目的端口的信息,还负责管理TCP连接的状态和控制。本节内容详尽地解析了TCP报头的各项字段及其作用,为读者提供了深入理解TCP协议的基础。 ... [详细]
  • 为了确保iOS应用能够安全地访问网站数据,本文介绍了如何在Nginx服务器上轻松配置CertBot以实现SSL证书的自动化管理。通过这一过程,可以确保应用始终使用HTTPS协议,从而提升数据传输的安全性和可靠性。文章详细阐述了配置步骤和常见问题的解决方法,帮助读者快速上手并成功部署SSL证书。 ... [详细]
  • MATLAB字典学习工具箱SPAMS:稀疏与字典学习的详细介绍、配置及应用实例
    SPAMS(Sparse Modeling Software)是一个强大的开源优化工具箱,专为解决多种稀疏估计问题而设计。该工具箱基于MATLAB,提供了丰富的算法和函数,适用于字典学习、信号处理和机器学习等领域。本文将详细介绍SPAMS的配置方法、核心功能及其在实际应用中的典型案例,帮助用户更好地理解和使用这一工具箱。 ... [详细]
  • 在使用 Qt 进行 YUV420 图像渲染时,由于 Qt 本身不支持直接绘制 YUV 数据,因此需要借助 QOpenGLWidget 和 OpenGL 技术来实现。通过继承 QOpenGLWidget 类并重写其绘图方法,可以利用 GPU 的高效渲染能力,实现高质量的 YUV420 图像显示。此外,这种方法还能显著提高图像处理的性能和流畅性。 ... [详细]
  • Parallels Desktop for Mac 是一款功能强大的虚拟化软件,能够在不重启的情况下实现在同一台电脑上无缝切换和使用 Windows 和 macOS 系统中的各种应用程序。该软件不仅提供了高效稳定的性能,还支持多种高级功能,如拖放文件、共享剪贴板等,极大地提升了用户的生产力和使用体验。 ... [详细]
  • 在Linux系统中,网络配置是至关重要的任务之一。本文详细解析了Firewalld和Netfilter机制,并探讨了iptables的应用。通过使用`ip addr show`命令来查看网卡IP地址(需要安装`iproute`包),当网卡未分配IP地址或处于关闭状态时,可以通过`ip link set`命令进行配置和激活。此外,文章还介绍了如何利用Firewalld和iptables实现网络流量控制和安全策略管理,为系统管理员提供了实用的操作指南。 ... [详细]
  • PHP预处理常量详解:如何定义与使用常量 ... [详细]
  • 使用Maven JAR插件将单个或多个文件及其依赖项合并为一个可引用的JAR包
    本文介绍了如何利用Maven中的maven-assembly-plugin插件将单个或多个Java文件及其依赖项打包成一个可引用的JAR文件。首先,需要创建一个新的Maven项目,并将待打包的Java文件复制到该项目中。通过配置maven-assembly-plugin,可以实现将所有文件及其依赖项合并为一个独立的JAR包,方便在其他项目中引用和使用。此外,该方法还支持自定义装配描述符,以满足不同场景下的需求。 ... [详细]
author-avatar
周郎某某某
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有