热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

开发笔记:车辆检测基于matlabyolov2车辆检测识别含Matlab源码581期

篇首语:本文由编程笔记#小编为大家整理,主要介绍了车辆检测基于matlabyolov2车辆检测识别含Matlab源码581期相关的知识,希望对你有一定的参考价值。

篇首语:本文由编程笔记#小编为大家整理,主要介绍了车辆检测基于matlab yolo v2车辆检测识别含Matlab源码 581期相关的知识,希望对你有一定的参考价值。






一、简介

1 前言
Okay……最近事情比较多,博客也发的少,所以决定搞一次大新闻。本此的博客详细记录了我使用Matlab进行车辆区域检测(R-CNN)与车型识别(AlexNet)的过程。并且内包含了训练数据集、测试数据集以及源码。
训练数据集是使用的斯坦福大学的一个车型数据库,内含196种不同的车型。写到这里我真的很想吐槽一下这个数据库里面的奥迪车系:很多黑白的图片啊喂!!! 做训练的时候AlexNet数据输入维度是3啊喂!!!害的我自己找了很多图片啊!!!….

2 环境
测试环境:
硬件:
Intel i5-4590
GTX 980
软件:
Matlab R2016b(只有这个版本才实现了RCNN…)

3 数据集的下载
嗯。一上来就发福利:
原始数据集,内含train/test:http://pan.baidu.com/s/1miTn9jy
我规整后的数据集,将图片变换为227*227,并且对少量黑白图片进行了替换:http://pan.baidu.com/s/1pKIbQiB
接下来的这个是每一张图片所对应的车型标注文件:http://pan.baidu.com/s/1nuOR7PR

在Matlab中下载AlexNet
AlexNet是2012年ImageNet大赛的冠军。它一共有8层,其中了5个卷积层,2层全连接和一层分类,如果使用其对一张图片进行前向传播,那么最后输出的这张图片属于1000种物体中哪一个的概率。
我这里对AlexNet在Matlab中进行了定义,这是我的代码和网络结构:


二、源代码

clear
clc

doTraining = true; % 是否进行训练

% 解压数据
% data = load('./data/carDatasetGroundTruth.mat');
% vehicleDataset = data.carDataset; % table型,包含文件路径和groundTruth
data = load('./data/vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset; % table型,包含文件路径和groundTruth

% 添加绝对路径至vehicleDataset中
vehicleDataset.imageFilename = fullfile([pwd, '/data/'],vehicleDataset.imageFilename);

% 显示数据集中的一个图像,以了解它包含的图像的类型。
vehicleDataset(1:4,:) % 显示部分数据情况

% 将数据集分成两部分:一个是用于训练检测器的训练集,一个是用于评估检测器的测试集。
% 选择 70% 的数据进行训练,其余数据用于评估。
rng(0); % 控制随机数生成
shuffledIndices = randperm(height(vehicleDataset));
idx = floor(0.7 * length(shuffledIndices) );
trainingDataTbl = vehicleDataset(shuffledIndices(1:idx),:);
testDataTbl = vehicleDataset(shuffledIndices(idx+1:end),:);

% 保存数据和标签
imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'}); % 路径
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle')); % 真实框和类别

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

% 整理训练测试集
trainingData = combine(imdsTrain,bldsTrain); % 联合文件路径和真实框
testData = combine(imdsTest,bldsTest);


% 显示数据
data = read(trainingData); % data包括图片数据、真实框坐标、类别
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox); % 在数据矩阵中标出真实框
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage) % 显示图像


% 创建yolo网络
inputSize = [224 224 3];
numClasses = width(vehicleDataset)-1; % 通过table的列数计算类别数

% 用于评估锚框个数
trainingDataForEstimation = transform(trainingData,@(data)preprocessData(data,inputSize));
numAnchors = 7;
[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors)


% 特征提取层采用resnet50
featureExtractionNetwork = resnet50;

featureLayer = 'activation_40_relu';

% 设置yolo网络
lgraph = yolov2Layers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

% 进行数据增强
augmentedTrainingData = transform(trainingData,@augmentData);

% 可视化增强后的图片
augmentedData = cell(4,1);
for k = 1:4
data = read(augmentedTrainingData);
augmentedData{k} = insertShape(data{1},'Rectangle',data{2});
reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

% 对增强数据进行预处理
preprocessedTrainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

data = read(preprocessedTrainingData);

% 显示一下
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)


% 训练参数
options = trainingOptions('sgdm', ...
'MiniBatchSize', 16, ....
'InitialLearnRate',1e-3, ...
'MaxEpochs',20,...
'CheckpointPath', tempdir, ...
'Shuffle','never');

if doTraining
% 训练YOLOv2检测器
[detector,info] = trainYOLOv2ObjectDetector(preprocessedTrainingData,lgraph,options);
else
% 载入预训练模型
pretrained = load('yolov2_mytrain.mat');
detector = pretrained.detector;
end


% 测试训练好的模型并显示
I = imread(testDataTbl.imageFilename{4});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

% 预处理测试集
preprocessedTestData = transform(testData,@(data)preprocessData(data,inputSize));
% 对测试集数据进行测试
detectionResults = detect(detector, preprocessedTestData);
% 评估准确率
[ap,recall,precision] = evaluateDetectionPrecision(detectionResults, preprocessedTestData);

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f',ap))




三、运行结果

在这里插入图片描述
在这里插入图片描述


四、备注

完整代码或代写添加QQ 1564658423






推荐阅读
  • 本文详细介绍了如何使用 Yii2 的 GridView 组件在列表页面实现数据的直接编辑功能。通过具体的代码示例和步骤,帮助开发者快速掌握这一实用技巧。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • PHP 编程疑难解析与知识点汇总
    本文详细解答了 PHP 编程中的常见问题,并提供了丰富的代码示例和解决方案,帮助开发者更好地理解和应用 PHP 知识。 ... [详细]
  • 本文详细介绍了如何解决Uploadify插件在Internet Explorer(IE)9和10版本中遇到的点击失效及JQuery运行时错误问题。通过修改相关JavaScript代码,确保上传功能在不同浏览器环境中的一致性和稳定性。 ... [详细]
  • 深入理解Tornado模板系统
    本文详细介绍了Tornado框架中模板系统的使用方法。Tornado自带的轻量级、高效且灵活的模板语言位于tornado.template模块,支持嵌入Python代码片段,帮助开发者快速构建动态网页。 ... [详细]
  • 本文介绍了如何使用JQuery实现省市二级联动和表单验证。首先,通过change事件监听用户选择的省份,并动态加载对应的城市列表。其次,详细讲解了使用Validation插件进行表单验证的方法,包括内置规则、自定义规则及实时验证功能。 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • 如何高效创建和使用字体图标
    在Web和移动开发中,为什么选择字体图标?主要原因是其卓越的性能,可以显著减少HTTP请求并优化页面加载速度。本文详细介绍了从设计到应用的字体图标制作流程,并提供了专业建议。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • [论文笔记] Crowdsourcing Translation: Professional Quality from Non-Professionals (ACL, 2011)
    Time:4hoursTimespan:Apr15–May3,2012OmarZaidan,ChrisCallison-Burch:CrowdsourcingTra ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • Explore a common issue encountered when implementing an OAuth 1.0a API, specifically the inability to encode null objects and how to resolve it. ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
author-avatar
mikewuhan_689
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有