作者:手机用户2502937345 | 来源:互联网 | 2024-11-23 20:11
本文通过一个具体的HadoopMapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。
本文旨在通过一个实际的案例,帮助读者理解如何使用Hadoop MapReduce来解决大数据处理中的具体问题。我们将通过统计手机用户的流量使用情况,来展示MapReduce在数据处理方面的强大功能。
待统计的流量数据样例:
以下是部分需要统计的流量数据示例:
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200
1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200
1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200
...
每条记录包含多个字段,其中关键字段包括手机号码、上行流量、下行流量等。我们的目标是统计每个手机号码的上行流量、下行流量及总流量。
为了实现这一目标,我们设计了相应的MapReduce程序,主要包括以下几个部分:
- FlowBean类:用于封装流量数据,实现了Writable接口以便于数据的序列化与反序列化。
- PhoneFlowMapper类:作为Map阶段的处理逻辑,负责解析输入数据并输出中间结果。
- PhoneFlowReducer类:作为Reduce阶段的处理逻辑,负责对中间结果进行聚合计算,最终输出每个手机号的总流量信息。
- PhoneFlowApp类:作为程序的入口,配置MapReduce任务的各项参数并提交执行。
FlowBean类代码示例:
public class FlowBean implements Writable {
private long upFlow;
private long downFlow;
private long sumFlow;
public FlowBean() {}
public FlowBean(long upFlow, long downFlow, long sumFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = sumFlow;
}
public void setFlowData(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
}
// Getters and setters
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(this.upFlow);
out.writeLong(this.downFlow);
out.writeLong(this.sumFlow);
}
@Override
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readLong();
this.downFlow = in.readLong();
this.sumFlow = in.readLong();
}
}
PhoneFlowMapper类代码示例:
public class PhoneFlowMapper extends Mapper {
private FlowBean flowBean = new FlowBean();
private Text keyText = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split("\t");
String phOneNum= fields[1];
long upflow = Long.parseLong(fields[fields.length - 3]);
long downflow = Long.parseLong(fields[fields.length - 2]);
flowBean.setFlowData(upflow, downflow);
keyText.set(phoneNum);
context.write(keyText, flowBean);
}
}
PhoneFlowReducer类代码示例:
public class PhoneFlowReducer extends Reducer {
private FlowBean flowBean = new FlowBean();
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
long sumDownFlow = 0;
long sumUpFlow = 0;
for (FlowBean value : values) {
sumUpFlow += value.getUpFlow();
sumDownFlow += value.getDownFlow();
}
flowBean.setFlowData(sumUpFlow, sumDownFlow);
context.write(key, flowBean);
}
}
PhoneFlowApp类代码示例:
public class PhoneFlowApp {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration cOnf= new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(PhoneFlowApp.class);
job.setMapperClass(PhoneFlowMapper.class);
job.setReducerClass(PhoneFlowReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
FileInputFormat.setInputPaths(job, new Path("hdfs://hadoop-001:9000/flowcount/input/HTTP_20130313143750.dat"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://hadoop-001:9000/flowcount/output/"));
boolean res = job.waitForCompletion(true);
System.exit(res ? 0 : 1);
}
}
通过上述代码,我们可以有效地统计出每个手机号的上行流量、下行流量及总流量,并将结果输出。此外,如果需要根据总流量进行排序,并将结果输出到不同的文件中,可以通过实现自定义的Partitioner类来实现这一功能。
自定义Partitioner类代码示例:
public class FlowPartitioner extends Partitioner {
@Override
public int getPartition(FlowBean flowBean, Text text, int numPartitions) {
String phOneNum= text.toString();
String headThreePhOneNum= phoneNum.substring(0, 3);
if (headThreePhoneNum.equals("134")) return 0;
else if (headThreePhoneNum.equals("135")) return 1;
else if (headThreePhoneNum.equals("136")) return 2;
else if (headThreePhoneNum.equals("137")) return 3;
else if (headThreePhoneNum.equals("138")) return 4;
else return 5;
}
}
通过设置自定义的Partitioner类,我们可以根据手机号前缀将数据分配到不同的Reducer中,从而实现数据的分类输出。