参考: https://blog.csdn.net/jewes/article/details/42970799
工作流程
Kafka 中消息是以 topic 进行分类的,生产者生产消息,消费者消费消息,都是面向 topic的。
**topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。**Producer 生产的数据会被不断追加到该log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己 消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。
kafka中的副本数量包含leader和flower,并且副本数不能超过机器数,超过机器数就不能保证每一个副本在不同机器上
存储和查找过程 kafka的数据是以.log文件为结尾的。由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据定位 效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment。每个 segment对应两个文件——“.index”文件和“.log”文件。
这些文件位于一个文件夹下,该文件夹的命名规则为:topic 名称+分区序号。例如,first 这个 topic 有三个分区,则其对应的文件夹为 first- 0,first-1,first-2。数据存储分为两个部分,数据分段和为数据文件建立索引。(.log文件和.index文件)
数据分段(.log文件) Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件(.log)里面,数据文件以该段中最小的offset命名。这样在查找指定offset的Message的时候,用二分查找就可以定位到该Message在哪个段中。
建立索引(.index文件) 数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message了,但是这依然需要顺序扫描才能找到对应offset的Message。为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。 索引文件中包含若干个索引条目,每个条目表示数据文件中一条Message的索引。索引包含两个部分(均为4个字节的数字),分别为相对offset和position。
相对offset:因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中最小的offset的大小。举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。 position,表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个position就可以读取对应的Message了。 index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。
小结 Message是按照topic来组织,每个topic可以分成多个的partition,比如:有5个partition的名为为page_visits的topic的目录结构为:
partition是分段的,每个段叫LogSegment,包括了一个数据文件和一个索引文件,下图是某个partition目录下的文件:
可以看到,这个partition有4个LogSegmen
一张图来展示是如何查找Message的
比如:要查找绝对offset为7的Message:
首先是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中。 打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807。 打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message。 这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的。 一句话,Kafka的Message存储采用了分区(partition),分段(LogSegment)和稀疏索引这几个手段来达到了高效性。
分区策略 需要将 producer 发送的数据封装成一个 ProducerRecord 对象。
指明 partition 的情况下,直接将指明的值直接作为 partiton 值; 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值; 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法 数据可靠性保证 为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到producer 发送的数据后,都需要向 producer 发送 ack(acknowledgement 确认收到),如果producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。
副本数据同步策略
Kafka 选择了第二种方案,原因如下:
1.同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1个副本,而 Kafka 的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。这里可能有一点歧义,解释举例如下:
例如,第一种方案,假设有5个机器宕机了,那么有5个副本无法使用,但必须保证半数以上的副本完成同步,才能发送ack,所以这时候就总共需要11台机器,11个副本才能容忍5台机器宕机才能正常使用。反之,11台机器,11个副本,最多也就允许5个副本,5个机器宕机。
例如,第二种方案,假设有5个机器宕机了,那么有5个副本无法使用,但是只要全部副本同步就可以完成同步,发送ack,所以,这时候就需要6台机器,6个副本才能容忍5台机器宕机。反之,6台机器,6个副本,最多也就允许5个副本,5个机器宕机。
对比以上两种,相同容错率的情况下,第二种方案明显使用更少的机器,第一种会使用更多的机器,造成冗余。
2.虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。
ISR 采用第二种方案之后,设想以下情景:leader 收到数据,所有 follower 都开始同步数据,但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去,直到它完成同步,才能发送 ack。这个问题怎么解决呢?
Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果 follower长时间未向leader 同 步 数 据 , 则 该 follower 将 被 踢 出 ISR , 该时间阈值由replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。
ack 应答机制 对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。
所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置
acks 参数配置:
acks:
0:producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟,broker 一接收到还没有写入磁盘就已经返回,当 broker 故障时有可能丢失数据;
1:producer 等待 broker 的 ack,partition 的 leader 落盘成功后返回 ack,如果在 follower同步成功之前 leader 故障,那么将会丢失数据;
-1(all):producer 等待 broker 的 ack,partition 的 leader 和 follower 全部落盘成功后才返回 ack。但是如果在 follower 同步完成后,broker 发送 ack 之前,leader 发生故障,那么会收不到producer的ack,ISR中的flower开始重新选举leader,然后producer就重新发送数据,造成数据重复。
故障处理细节 LEO:指的是每个副本最大的 offset; HW:指的是消费者能见到的最大的 offset,ISR 队列中最小的 LEO。
(1)follower 故障
follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重 新加入 ISR 了。
(2)leader 故障
leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader同步数据。
这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复
Exactly Once 语义 将服务器的 ACK 级别设置为-1,可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。相对的,将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。
At Least Once 可以保证数据不丢失,但是不能保证数据不重复;相对的,At Most Once可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。在 0.11 版 本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重 。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
0.11 版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据,Server 端都只会持久化一条。幂等性结合 At Least Once 语义,就构成了 Kafka 的 Exactly Once 语义。即:
At Least Once + 幂等性 = Exactly Once
要启用幂等性,只需要将 Producer 的参数中 enable.idompotence 设置为 true 即可。Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而 Broker 端会对做缓存,当具有相同主键的消息提交时,Broker 只会持久化一条。 但是 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨分区跨会话的 Exactly Once。 比如,leader和flower也都写入了hello这一条数据,返回ack的时候,producer挂了,没收到ack,再次建立producer会话的时候,又重新发送hello,数据重复