热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Kafka学习笔记(3)Kafaka中的存储机制

参考:https:blog.csdn.netjewesarticledetails42970799工作流程Kafka中消息是以topic进行分类的,生

参考:
https://blog.csdn.net/jewes/article/details/42970799


工作流程

在这里插入图片描述

Kafka 中消息是以 topic 进行分类的,生产者生产消息,消费者消费消息,都是面向 topic的。

**topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。**Producer 生产的数据会被不断追加到该log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己
消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。

kafka中的副本数量包含leader和flower,并且副本数不能超过机器数,超过机器数就不能保证每一个副本在不同机器上
在这里插入图片描述


存储和查找过程

kafka的数据是以.log文件为结尾的。由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据定位
效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment。每个 segment对应两个文件——“.index”文件和“.log”文件。
在这里插入图片描述

这些文件位于一个文件夹下,该文件夹的命名规则为:topic 名称+分区序号。例如,first 这个 topic 有三个分区,则其对应的文件夹为 first-
0,first-1,first-2。数据存储分为两个部分,数据分段和为数据文件建立索引。(.log文件和.index文件)


数据分段(.log文件)

Kafka解决查询效率的手段之一是将数据文件分段,比如有100条Message,它们的offset是从0到99。假设将数据文件分成5段,第一段为0-19,第二段为20-39,以此类推,每段放在一个单独的数据文件(.log)里面,数据文件以该段中最小的offset命名。这样在查找指定offset的Message的时候,用二分查找就可以定位到该Message在哪个段中。


建立索引(.index文件)

数据文件分段使得可以在一个较小的数据文件中查找对应offset的Message了,但是这依然需要顺序扫描才能找到对应offset的Message。为了进一步提高查找的效率,Kafka为每个分段后的数据文件建立了索引文件,文件名与数据文件的名字是一样的,只是文件扩展名为.index。
索引文件中包含若干个索引条目,每个条目表示数据文件中一条Message的索引。索引包含两个部分(均为4个字节的数字),分别为相对offset和position。


  • 相对offset:因为数据文件分段以后,每个数据文件的起始offset不为0,相对offset表示这条Message相对于其所属数据文件中最小的offset的大小。举例,分段后的一个数据文件的offset是从20开始,那么offset为25的Message在index文件中的相对offset就是25-20 = 5。存储相对offset可以减小索引文件占用的空间。
  • position,表示该条Message在数据文件中的绝对位置。只要打开文件并移动文件指针到这个position就可以读取对应的Message了。

index文件中并没有为数据文件中的每条Message建立索引,而是采用了稀疏存储的方式,每隔一定字节的数据建立一条索引。这样避免了索引文件占用过多的空间,从而可以将索引文件保留在内存中。但缺点是没有建立索引的Message也不能一次定位到其在数据文件的位置,从而需要做一次顺序扫描,但是这次顺序扫描的范围就很小了。


小结

Message是按照topic来组织,每个topic可以分成多个的partition,比如:有5个partition的名为为page_visits的topic的目录结构为:
在这里插入图片描述

partition是分段的,每个段叫LogSegment,包括了一个数据文件和一个索引文件,下图是某个partition目录下的文件:

在这里插入图片描述
可以看到,这个partition有4个LogSegmen

一张图来展示是如何查找Message的
在这里插入图片描述

比如:要查找绝对offset为7的Message:


  1. 首先是用二分查找确定它是在哪个LogSegment中,自然是在第一个Segment中。
  2. 打开这个Segment的index文件,也是用二分查找找到offset小于或者等于指定offset的索引条目中最大的那个offset。自然offset为6的那个索引是我们要找的,通过索引文件我们知道offset为6的Message在数据文件中的位置为9807。
  3. 打开数据文件,从位置为9807的那个地方开始顺序扫描直到找到offset为7的那条Message。
    这套机制是建立在offset是有序的。索引文件被映射到内存中,所以查找的速度还是很快的。

一句话,Kafka的Message存储采用了分区(partition),分段(LogSegment)和稀疏索引这几个手段来达到了高效性。


分区策略

需要将 producer 发送的数据封装成一个 ProducerRecord 对象。

在这里插入图片描述


  1. 指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
  2. 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
  3. 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法

数据可靠性保证

为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到producer 发送的数据后,都需要向 producer 发送 ack(acknowledgement 确认收到),如果producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。

在这里插入图片描述


副本数据同步策略

在这里插入图片描述

Kafka 选择了第二种方案,原因如下:

1.同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1个副本,而 Kafka 的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。这里可能有一点歧义,解释举例如下:

例如,第一种方案,假设有5个机器宕机了,那么有5个副本无法使用,但必须保证半数以上的副本完成同步,才能发送ack,所以这时候就总共需要11台机器,11个副本才能容忍5台机器宕机才能正常使用。反之,11台机器,11个副本,最多也就允许5个副本,5个机器宕机。

例如,第二种方案,假设有5个机器宕机了,那么有5个副本无法使用,但是只要全部副本同步就可以完成同步,发送ack,所以,这时候就需要6台机器,6个副本才能容忍5台机器宕机。反之,6台机器,6个副本,最多也就允许5个副本,5个机器宕机。

对比以上两种,相同容错率的情况下,第二种方案明显使用更少的机器,第一种会使用更多的机器,造成冗余。

2.虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。


ISR

采用第二种方案之后,设想以下情景:leader 收到数据,所有 follower 都开始同步数据,但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去,直到它完成同步,才能发送 ack。这个问题怎么解决呢?

Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果 follower长时间未向leader 同 步 数 据 , 则 该 follower 将 被 踢 出 ISR , 该时间阈值由replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。


ack 应答机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。

所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置

acks 参数配置:

acks:

0:producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟,broker 一接收到还没有写入磁盘就已经返回,当 broker 故障时有可能丢失数据;

1:producer 等待 broker 的 ack,partition 的 leader 落盘成功后返回 ack,如果在 follower同步成功之前 leader 故障,那么将会丢失数据;

在这里插入图片描述

-1(all):producer 等待 broker 的 ack,partition 的 leader 和 follower 全部落盘成功后才返回 ack。但是如果在 follower 同步完成后,broker 发送 ack 之前,leader 发生故障,那么会收不到producer的ack,ISR中的flower开始重新选举leader,然后producer就重新发送数据,造成数据重复。

在这里插入图片描述


故障处理细节

在这里插入图片描述
LEO:指的是每个副本最大的 offset;
HW:指的是消费者能见到的最大的 offset,ISR 队列中最小的 LEO。

(1)follower 故障

follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重
新加入 ISR 了。

(2)leader 故障

leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader同步数据。

这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复


Exactly Once 语义

将服务器的 ACK 级别设置为-1,可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。相对的,将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。

At Least Once 可以保证数据不丢失,但是不能保证数据不重复;相对的,At Most Once可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。在 0.11 版
本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重
。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。

0.11 版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据,Server 端都只会持久化一条。幂等性结合 At Least Once 语义,就构成了 Kafka 的 Exactly Once 语义。即:


At Least Once + 幂等性 = Exactly Once


要启用幂等性,只需要将 Producer 的参数中 enable.idompotence 设置为 true 即可。Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而
Broker 端会对做缓存,当具有相同主键的消息提交时,Broker 只会持久化一条。
但是 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨分区跨会话的 Exactly Once。
比如,leader和flower也都写入了hello这一条数据,返回ack的时候,producer挂了,没收到ack,再次建立producer会话的时候,又重新发送hello,数据重复


推荐阅读
  • 采用IKE方式建立IPsec安全隧道
    一、【组网和实验环境】按如上的接口ip先作配置,再作ipsec的相关配置,配置文本见文章最后本文实验采用的交换机是H3C模拟器,下载地址如 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • 目录一、salt-job管理#job存放数据目录#缓存时间设置#Others二、returns模块配置job数据入库#配置returns返回值信息#mysql安全设置#创建模块相关 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 基于Node.js、Express、MongoDB和Socket.io的实时聊天应用开发
    本文详细介绍了使用Node.js、Express、MongoDB和Socket.io构建的实时聊天应用程序。涵盖项目结构、技术栈选择及关键依赖项的配置。 ... [详细]
  • 本文深入探讨了SQL数据库中常见的面试问题,包括如何获取自增字段的当前值、防止SQL注入的方法、游标的作用与使用、索引的形式及其优缺点,以及事务和存储过程的概念。通过详细的解答和示例,帮助读者更好地理解和应对这些技术问题。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • 本文深入探讨了Memcached的内存管理机制,特别是其采用的Slab Allocator技术。该技术通过预分配不同大小的内存块来有效解决内存碎片问题,并确保高效的数据存储与检索。文中详细描述了Slab Allocator的工作原理、内存分配流程以及相关的优化策略。 ... [详细]
  • Redux入门指南
    本文介绍Redux的基本概念和工作原理,帮助初学者理解如何使用Redux管理应用程序的状态。Redux是一个用于JavaScript应用的状态管理库,特别适用于React项目。 ... [详细]
  • 深入解析Serverless架构模式
    本文将详细介绍Serverless架构模式的核心概念、工作原理及其优势。通过对比传统架构,探讨Serverless如何简化应用开发与运维流程,并介绍当前主流的Serverless平台。 ... [详细]
  • 本文总结了优化代码可读性的核心原则与技巧,通过合理的变量命名、函数和对象的结构化组织,以及遵循一致性等方法,帮助开发者编写更易读、维护性更高的代码。 ... [详细]
  • 本文将详细介绍多个流行的 Android 视频处理开源框架,包括 ijkplayer、FFmpeg、Vitamio、ExoPlayer 等。每个框架都有其独特的优势和应用场景,帮助开发者更高效地进行视频处理和播放。 ... [详细]
  • 本教程详细介绍了如何使用 TensorFlow 2.0 构建和训练多层感知机(MLP)网络,涵盖回归和分类任务。通过具体示例和代码实现,帮助初学者快速掌握 TensorFlow 的核心概念和操作。 ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 精致小屏灰色风格苹果CMS v10模板,支持DIY主题管理系统
    探索一款专为影视站设计的苹果CMS v10模板,具备强大的主题管理系统和500多个设置项,无需二次开发即可轻松配置。下载地址:https://www.mytheme.cn/maccms/244.html,演示地址:http://demo.mytheme.cn/index.php?id=244。 ... [详细]
author-avatar
lobtao
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有