热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Kafka入门详解

1.1什么是kafka?Kafka最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息

1.1 什么是kafka?

Kafka最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。随着kafka的发展,功能并不局限于消息系统。kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer。kafka集群有多个kafka实例组成,每个实例(server)成为broker。无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。

1.2 Kafka的特性:

– 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。

– 可扩展性:kafka集群支持热扩展

– 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

– 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

– 高并发:支持数千个客户端同时读写

1.3 Kafka适用场景

由于 Kafka存在高容错、高扩展、扩展分布式等特性, Kafka主要应用场景如下:

日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。

消息系统:解耦和生产者和消费者、缓存消息等。

用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。

运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。

流式处理:比如spark streaming和storm

1.4 Kafka中的相关概念

Kafka中发布订阅的对象是topic。可以为每类数据创建一个topic,把向topic发布消息的客户端称作producer,从topic订阅消息的客户端称作consumer。Producers和consumers可以同时从多个topic读写数据。一个kafka集群由一个或多个broker服务器组成,它负责持久化和备份具体的kafka消息。

Broker(代理者 ):Kafka集群中的机器 /服务被称为broker, 是一个物理概念。一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。注意:一台节点上可以有多个broker,这和HDFS上一个节点是一个namenode或者datanode有所区别。一台机器上的broker数量由server.properties的数量决定。

Topic:一类消息,消息存放的目录即主题,例如page view日志、click日志等都可以以topic的形式存在,Kafka集群能够同时负责多个topic的分发。一个broker可以容纳多个topic。

Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。在数据的 产生和消费过程中,不需要关注具体存储的Partition在哪个Broker上,只需要指定 Topic 即可,由 KafkaKafka Kafka负责将数据和对应的 Partition关联上

Segment:partition物理上由多个segment组成,每个Segment存着message信息

Message (消息 ):传递的数据对象,主要由四部分构成(offset(偏移量 )、key、value、 timestamp(插入时间 )

消息和数据不是一个概念,消息是对数据的封装,其中的value部分是可以看成是数据。

Producer : 生产message发送到topic

Consumer : 订阅topic消费message, consumer作为一个线程来消费

Consumer Group:一个Consumer Group包含多个consumer, 这个是预先在配置文件中配置好的。各个consumer(consumer 线程)可以组成一个组(Consumer group ),partition中的每个message只能被组(Consumer group ) 中的一个consumer(consumer 线程 )消费,如果一个message可以被多个consumer(consumer 线程 ) 消费的话,那么这些consumer必须在不同的组。Kafka不支持一个partition中的message由两个或两个以上的consumer thread来处理,即便是来自不同的consumer group的也不行。它不能像AMQ那样可以多个BET作为consumer去处理message,这是因为多个BET去消费一个Queue中的数据的时候,由于要保证不能多个线程拿同一条message,所以就需要行级别悲观锁(for update),这就导致了consume的性能下降,吞吐量不够。而kafka为了保证吞吐量,只允许一个consumer线程去访问一个partition。如果觉得效率不高的时候,可以加partition的数量来横向扩展,那么再加新的consumer thread去消费。这样没有锁竞争,充分发挥了横向的扩展性,吞吐量极高。这也就形成了分布式消费的概念。

1.4 Kafka的拓扑图:

Kafka是显示的分布式消息发布和订阅系统,除了有多个producer, broker,consumer外,还有一个zookeeper集群用于管理producer,broker和consumer之间的协同调用。

《Kafka入门详解》
《Kafka入门详解》
《Kafka入门详解》
《Kafka入门详解》

从图中可以看出,一个典型的Kafka集群中包含若干Producer(可以是web前端产生的PageView,或者是服务器日志,系统CPU、Memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。

Producer到Broker的过程是push,也就是有数据就推送到Broker,Consumer到Broker的过程是pull,是通过Consumer主动去拉数据的,而不是Broker把数据主动发送到Consumer端的。

1.5 Kafka安装部署及测试

Kafka的开发语言为 Scala。提供了各种不同语言的 API API。 Kafka的安装方式主要由三种,分别是:单机、伪分布式、完全分布式;其中伪分布式和完全分布式几乎完全一样。

安装步骤:

  1. 安装 JAVA和Scala
  2. 安装 Zookeeper
  3. 安装 Kafka

Kafka安装 (伪分布式 )

解压

$ tar -zxf kafka_2.11-2.0.0.tgz

配置

修改配置文件 {KAFKA_HOME}/conf/server.properties。如果是伪分布式,那么需要在单台机器上 copy多个 server.properties文件;如果是完全分布式,那么需要将修改好的 KAFKA 完全copy到其它机器上。

${KAFKA_HOME}/config/server.properties
port=9092
host.name=haotname
advertised.host.name=haotname
advertised.port=9092

zookeeper.cOnnect=hostname:2181

单节点多broker,就应该将上面的这个server.properties,复制几份出来

cp config/server.properties config/server1.properties
cp config/server.properties config/server2.properties
$ mv config/server.properties config/server0.properties

修改${KAFKA_HOME}/config/server1.properties
broker.id=1
listeners=PLAINTEXT://:9093
port=9093
log.dirs=/usr/local/kafka_2.11-0.9.0.1/data/log1
// 因为是同一节点上开启了多个broker,所以只能通过端口区分,若是broker都在不同的节点上,不用通过端口区分

启动测试 1.启动zookeeper

$ bin/zkServer.sh start

查看是否正常

$ bin/zkServer.sh status

2.启动kafaka的broker进程

$bin/kafka-server-start.sh -daemon config/server0.properties

关闭服务使用

{KAFKA_HOME}/bin/kafka-server serverserver -stop.sh


推荐阅读
  • Spark与HBase结合处理大规模流量数据结构设计
    本文将详细介绍如何利用Spark和HBase进行大规模流量数据的分析与处理,包括数据结构的设计和优化方法。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • 技术日志:深入探讨Spark Streaming与Spark SQL的融合应用
    技术日志:深入探讨Spark Streaming与Spark SQL的融合应用 ... [详细]
  • 在Linux系统中,原本已安装了多个版本的Python 2,并且还安装了Anaconda,其中包含了Python 3。本文详细介绍了如何通过配置环境变量,使系统默认使用指定版本的Python,以便在不同版本之间轻松切换。此外,文章还提供了具体的实践步骤和注意事项,帮助用户高效地管理和使用不同版本的Python环境。 ... [详细]
  • NoSQL数据库,即非关系型数据库,有时也被称作Not Only SQL,是一种区别于传统关系型数据库的管理系统。这类数据库设计用于处理大规模、高并发的数据存储与查询需求,特别适用于需要快速读写大量非结构化或半结构化数据的应用场景。NoSQL数据库通过牺牲部分一致性来换取更高的可扩展性和性能,支持分布式部署,能够有效应对互联网时代的海量数据挑战。 ... [详细]
  • com.sun.javadoc.PackageDoc.exceptions()方法的使用及代码示例 ... [详细]
  • 本指南从零开始介绍Scala编程语言的基础知识,重点讲解了Scala解释器REPL(读取-求值-打印-循环)的使用方法。REPL是Scala开发中的重要工具,能够帮助初学者快速理解和实践Scala的基本语法和特性。通过详细的示例和练习,读者将能够熟练掌握Scala的基础概念和编程技巧。 ... [详细]
  • 本文探讨了 Kafka 集群的高效部署与优化策略。首先介绍了 Kafka 的下载与安装步骤,包括从官方网站获取最新版本的压缩包并进行解压。随后详细讨论了集群配置的最佳实践,涵盖节点选择、网络优化和性能调优等方面,旨在提升系统的稳定性和处理能力。此外,还提供了常见的故障排查方法和监控方案,帮助运维人员更好地管理和维护 Kafka 集群。 ... [详细]
  • HBase Java API 进阶:过滤器详解与应用实例
    本文详细探讨了HBase 1.2.6版本中Java API的高级应用,重点介绍了过滤器的使用方法和实际案例。首先,文章对几种常见的HBase过滤器进行了概述,包括列前缀过滤器(ColumnPrefixFilter)和时间戳过滤器(TimestampsFilter)。此外,还详细讲解了分页过滤器(PageFilter)的实现原理及其在大数据查询中的应用场景。通过具体的代码示例,读者可以更好地理解和掌握这些过滤器的使用技巧,从而提高数据处理的效率和灵活性。 ... [详细]
  • 在搭建Hadoop集群以处理大规模数据存储和频繁读取需求的过程中,经常会遇到各种配置难题。本文总结了作者在实际部署中遇到的典型问题,并提供了详细的解决方案,帮助读者避免常见的配置陷阱。通过这些经验分享,希望读者能够更加顺利地完成Hadoop集群的搭建和配置。 ... [详细]
  • 在第二课中,我们将深入探讨Scala的面向对象编程核心概念及其在Spark源码中的应用。首先,通过详细的实战案例,全面解析Scala中的类和对象。作为一门纯面向对象的语言,Scala的类设计和对象使用是理解其面向对象特性的关键。此外,我们还将介绍如何通过阅读Spark源码来进一步巩固对这些概念的理解。这不仅有助于提升编程技能,还能为后续的高级应用开发打下坚实的基础。 ... [详细]
  • 在Hive中合理配置Map和Reduce任务的数量对于优化不同场景下的性能至关重要。本文探讨了如何控制Hive任务中的Map数量,分析了当输入数据超过128MB时是否会自动拆分,以及Map数量是否越多越好的问题。通过实际案例和实验数据,本文提供了具体的配置建议,帮助用户在不同场景下实现最佳性能。 ... [详细]
  • 本文详细介绍了HDFS的基础知识及其数据读写机制。首先,文章阐述了HDFS的架构,包括其核心组件及其角色和功能。特别地,对NameNode进行了深入解析,指出其主要负责在内存中存储元数据、目录结构以及文件块的映射关系,并通过持久化方案确保数据的可靠性和高可用性。此外,还探讨了DataNode的角色及其在数据存储和读取过程中的关键作用。 ... [详细]
  • 深入理解Spark框架:RDD核心概念与操作详解
    RDD是Spark框架的核心计算模型,全称为弹性分布式数据集(Resilient Distributed Dataset)。本文详细解析了RDD的基本概念、特性及其在Spark中的关键操作,包括创建、转换和行动操作等,帮助读者深入理解Spark的工作原理和优化策略。通过具体示例和代码片段,进一步阐述了如何高效利用RDD进行大数据处理。 ... [详细]
  • FileBeat + Flume + Kafka + HDFS + Neo4j + SparkStreaming + MySQL:【案例】三度关系推荐V1.0版本11:每周一计算最近一月主播视频评级
    一、数据计算步骤汇总下面我们通过文字梳理一下具体的数据计算步骤。第一步:历史粉丝关注数据初始化第二步:实时维护粉丝关注数据第三步:每天定 ... [详细]
author-avatar
手机用户2502911617_428
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有