热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

K中心点算法之PAM

一.PAM聚类算法:选用簇中位置最中心的对象,试图对n个对象给出k个划分;代表对象也被称为是中心点,其他对象则被称为非代表对象;最初随机选择k个对象作为中心点,该算法反复地用非代表对象
一.PAM聚类算法:         选用簇中位置最中心的对象,试图对n个对象给出k个划分;代表对象也被称为是中心点,其他对象则被称为非代表对象;最初随机选择k个对象作为中心点,该算法反复地用非代表对象来代替代表对象,试图找出更好的中心点,以改进聚类的质量;在每次迭代中,所有可能的对象对被分析,每个对中的一个对象是中心点,而另一个是非代表对象。对可能的各种组合,估算聚类结果的质量;一个对象Oi可以被使最大平方-误差值减少的对象代替;在一次迭代中产生的最佳对象集合成为下次迭代的中心点。

       对比kmeans:k-means是每次选簇的均值作为新的中心,迭代直到簇中对象分布不再变化。其缺点是对于离群点是敏感的,因为一个具有很大极端值的对象会扭曲数据分布。那么我们可以考虑新的簇中心不选择均值而是选择簇内的某个对象,只要使总的代价降低就可以。kmedoids算法比kmenas对于噪声和孤立点更鲁棒,因为它最小化相异点对的和(minimizes a sum of pairwise dissimilarities )而不是欧式距离的平方和(sum of squared Euclidean distances.)。一个中心点(medoid)可以这么定义:簇中某点的平均差异性在这一簇中所有点中最小。

  二.算法描述: wiki上有对pam算法的解释,这里着重对维基百科的例子进行介绍:k-medoids k-medoid聚类算法的最常见实现为Partitioning Around Medoids (PAM)算法,PAM利用了贪婪搜索,不一定可以找到最优解,但是比穷尽搜索更快。   输入:簇的数目k和包含n个对象的数据输出:k个簇,使得所有对象与其距离最近中心点的相异度总和最小

1. 初始化:随机挑选n个点中的k个点作为中心点。

2. 将其余的点根据距离划分至这k个类别中。

3. 当损失值减少时:

       1)对于每个中心点m,对于每个非中心点o:

              i)交换m和o,重新计算损失(损失值的大小为:所有点到中心点的距离和)

              ii)如果总的损失增加则不进行交换

 另外的一个解释,和上面一样:1) 任意选择k个对象作为初始的簇中心点2) Repeat3) 指派每个剩余对象给离他最近的中心点所表示的簇4) Repeat5) 选择一个未被选择的中心点Oi6) Repeat7) 选择一个未被选择过的非中心点对象Oh8) 计算用Oh代替Oi的总代价并记录在S中9) Until 所有非中心点都被选择过10) Until 所有的中心点都被选择过11) If 在S中的所有非中心点代替所有中心点后的计算出总代价有小于0的存在,then找出S中的用非中心点替代中心点后代价最小的一个,并用该非中心点替代对应的中心点,形成一个新的k个中心点的集合;12) Until 没有再发生簇的重新分配,即所有的S都大于0. 三. 例子:对下列表中(图1)的10个数据聚类, k=2.可以看到这里每个数据的维度都为2。                                            图1                                                                               图2

1. 随机挑选k=2个中心点:c1=(3,4) , c2=(7,4).那么将所有点到这两点的距离计算出来(图2),可以看到黑体为到两个中心点距离较小的距离值。那么根据图2,我们可以对所有数据点进行归类:

    Cluster1 = {(3,4)(2,6)(3,8)(4,7)}

    Cluster2 = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)}

很容易算出此时的损失值cost为:20

2. 挑选一个非中心点O’,让我们假定挑选的为X7 ,即O‘=(7,3)。那么此时这两个中心点暂时变成了c1(3,4) and O′(7,3),那么我们要计算一下这一替换措施所带来的损失cost:

                

                                             图3                                                                                                                                图4

正如图3和图4所见,此时的cost(很好计算,黑体数值的和)变成了:  total cost = 3+4+4+2+2+1+3+3 = 22

此时的cost为22,比之前的cost=20要大,所以这次替换的损失变大啦,我们最终不进行这次替换。

这仅仅是X替代了c2点,我们应该计算除了c1和c2点外的所有点分别替代c1和c2,将这些替换后的损失都计算出来,看看有没有比20小的损失,如果有那么我们就将这个最小损失对应的中心点对作为新的中心点对。至此才完成了一次迭代。重复迭代直至收敛。

 四. python实现: 
#!/usr/bin/env python3
#
-*- coding: utf-8 -*-
"""
Created on Sun Oct 22 20:31:32 2017

@author: LPS
"""

import numpy as np
import pandas as pd
import copy

df
= np.loadtxt('waveform.txt',delimiter=',') # 载入waveform数据集,22列,最后一列为标签0,1,2
s= np.array(df)
print(s.shape)
print(s[0:10])

data0
= s[s[:,s.shape[1]-1]==0][:100] # 取标签为0的前100个样本
data1 = s[s[:,s.shape[1]-1]==1][:100] # 取标签为1的前100个样本
data2 = s[s[:,s.shape[1]-1]==2][:100] # 取标签为2的前100个样本

data
= np.array([data0,data1,data2])
data
= data.reshape(-1,22)

def dis(data_a, data_b):
return np.sqrt(np.sum(np.square(data_a - data_b), axis=1)) # 返回欧氏距离

def kmeans_wave(n=10, k=3, data=data):
data_new
= copy.deepcopy(data) # 前21列存放数据,不可变。最后1列即第22列存放标签,标签列随着每次迭代而更新。
data_now = copy.deepcopy(data) # data_now用于存放中间过程的数据

center_point
= np.random.choice(300,3,replace=False)
center
= data_new[center_point,:20] # 随机形成的3个中心,维度为(3,21)


distance
= [[] for i in range(k)]
distance_now
= [[] for i in range(k)] # distance_now用于存放中间过程的距离
lost = np.ones([300,k])*float('inf') # 初始lost为维度为(300,3)的无穷大

for j in range(k): # 首先完成第一次划分,即第一次根据距离划分所有点到三个类别中
distance[j] = np.sqrt(np.sum(np.square(data_new[:,:20] - np.array(center[j])), axis=1))
data_new[:,
21] = np.argmin(np.array(distance), axis=0) # data_new 的最后一列,即标签列随之改变,变为距离某中心点最近的标签,例如与第0个中心点最近,则为0

for i in range(n): # 假设迭代n次

for m in range(k): # 每一次都要分别替换k=3个中心点,所以循环k次。这层循环结束即算出利用所有点分别替代3个中心点后产生的900个lost值

for l in range(300): # 替换某个中心点时都要利用全部点进行替换,所以循环300次。这层循环结束即算出利用所有点分别替换1个中心点后产生的300个lost值

center_now
= copy.deepcopy(center) # center_now用于存放中间过程的中心点
center_now[m] = data_now[l,:20] # 用第l个点替换第m个中心点
for j in range(k): # 计算暂时替换1个中心点后的距离值
distance_now[j] = np.sqrt(np.sum(np.square(data_now[:,:20] - np.array(center_now[j])), axis=1))
data_now[:,
21] = np.argmin(np.array(distance), axis=0) # data_now的标签列更新,注意data_now时中间过程,所以这里不能选择更新data_new的标签列

lost[l, m]
= (dis(data_now[:, :20], center_now[data_now[:, 21].astype(int)]) \
- dis(data_now[:, :20], center[data_new[:, 21].astype(int)])).sum() # 这里很好理解lost的维度为什么为300*3了。lost[l,m]的值代表用第l个点替换第m个中心点的损失值

if np.min(lost) <0: # lost意味替换代价,选择代价最小的来完成替换
index = np.where(np.min(lost) == lost) # 即找到min(lost)对应的替换组合
index_l = index[0][0] # index_l指将要替代某个中心点的候选点
index_m = index[1][0] # index_m指将要被替代的某个中心点,即用index_l来替代index_m

center[index_m]
= data_now[index_l,:20] #更新聚类中心

for j in range(k):
distance[j]
= np.sqrt(np.sum(np.square(data_now[:, :20] - np.array(center[j])), axis=1))
data_new[:,
21] = np.argmin(np.array(distance), axis=0) # 更新参考矩阵,至此data_new的标签列得以更新,即完成了一次迭代

return data_new # 最后返回data_new,其最后一列即为最终聚好的标签


if __name__ == '__main__':
data_new
= kmeans_wave(10,3,data)
print(data_new.shape)
print(np.mean(data[:,21] == data_new[:,21])) # 验证划分准确度

 

附:利用上面实现的代码对图片聚类。结果发现和kmeans相比实在是太慢了。就拿500*500的三通道jpg来说,有500*500=250000个像素值,即这个图像的数据集维度为(250000,3)。而上文我们实现的数据集维度仅仅为(300, 3)。这意味每次迭代都要循环250000*3次。所以我只好截选了一张小图来测试。。代码与结果如下:

pam for image

                                      

                图1.从1200*800图中截取的70*70的图片                                                                           图2. 迭代20次k=3的结果

 其实这个结果意义不大,只是作为测试。因为像素分布太集中,可以选择其他分布较散的图像,此外改进pam算法来实现更高效的聚类。

 

 

  参考:聚类分析--k中心点算法维基百科注:无意中发现sklearn中python的实现->scikit-learn/sklearn/cluster/k_medoids_.py

推荐阅读
  • 颜色迁移(reinhard VS welsh)
    不要谈什么天分,运气,你需要的是一个截稿日,以及一个不交稿就能打爆你狗头的人,然后你就会被自己的才华吓到。------ ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • Android自定义控件绘图篇之Paint函数大汇总
    本文介绍了Android自定义控件绘图篇中的Paint函数大汇总,包括重置画笔、设置颜色、设置透明度、设置样式、设置宽度、设置抗锯齿等功能。通过学习这些函数,可以更好地掌握Paint的用法。 ... [详细]
  • 上图是InnoDB存储引擎的结构。1、缓冲池InnoDB存储引擎是基于磁盘存储的,并将其中的记录按照页的方式进行管理。因此可以看作是基于磁盘的数据库系统。在数据库系统中,由于CPU速度 ... [详细]
  • Linux服务器密码过期策略、登录次数限制、私钥登录等配置方法
    本文介绍了在Linux服务器上进行密码过期策略、登录次数限制、私钥登录等配置的方法。通过修改配置文件中的参数,可以设置密码的有效期、最小间隔时间、最小长度,并在密码过期前进行提示。同时还介绍了如何进行公钥登录和修改默认账户用户名的操作。详细步骤和注意事项可参考本文内容。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • 3.223.28周学习总结中的贪心作业收获及困惑
    本文是对3.223.28周学习总结中的贪心作业进行总结,作者在解题过程中参考了他人的代码,但前提是要先理解题目并有解题思路。作者分享了自己在贪心作业中的收获,同时提到了一道让他困惑的题目,即input details部分引发的疑惑。 ... [详细]
  • 摘要: 在测试数据中,生成中文姓名是一个常见的需求。本文介绍了使用C#编写的随机生成中文姓名的方法,并分享了相关代码。作者欢迎读者提出意见和建议。 ... [详细]
  • 图像因存在错误而无法显示 ... [详细]
  • STL迭代器的种类及其功能介绍
    本文介绍了标准模板库(STL)定义的五种迭代器的种类和功能。通过图表展示了这几种迭代器之间的关系,并详细描述了各个迭代器的功能和使用方法。其中,输入迭代器用于从容器中读取元素,输出迭代器用于向容器中写入元素,正向迭代器是输入迭代器和输出迭代器的组合。本文的目的是帮助读者更好地理解STL迭代器的使用方法和特点。 ... [详细]
  • Python教学练习二Python1-12练习二一、判断季节用户输入月份,判断这个月是哪个季节?3,4,5月----春 ... [详细]
  • 花瓣|目标值_Compose 动画边学边做夏日彩虹
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了Compose动画边学边做-夏日彩虹相关的知识,希望对你有一定的参考价值。引言Comp ... [详细]
author-avatar
我摸你马匹
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有