输出层的残差
和BP一样,CNN的输出层的残差与中间层的残差计算方式不同,输出层的残差是输出值与类标值得误差值,而中间各层的残差来源于下一层的残差的加权和。输出层的残差计算如下:
下一层为采样层(subsampling)的卷积层的残差
当一个卷积层L的下一层(L+1)为采样层,并假设我们已经计算得到了采样层的残差,现在计算该卷积层的残差。从最上面的网络结构图我们知道,采样层(L+1)的map大小是卷积层L的1/(scale*scale),ToolBox里面,scale取2,但这两层的map个数是一样的,卷积层L的某个map中的4个单元与L+1层对应map的一个单元关联,可以对采样层的残差与一个scale*scale的全1矩阵进行克罗内克积进行扩充,使得采样层的残差的维度与上一层的输出map的维度一致,Toolbox的代码如下,其中d表示残差,a表示输出值:
net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1])
扩展过程:
下一层为卷积层(subsampling)的采样层的残差
当某个采样层L的下一层是卷积层(L+1),并假设我们已经计算出L+1层的残差,现在计算L层的残差。采样层到卷积层直接的连接是有权重和偏置参数的,因此不像卷积层到采样层那样简单。现再假设L层第j个map Mj与L+1层的M2j关联,按照BP的原理,L层的残差Dj是L+1层残差D2j的加权和,但是这里的困难在于,我们很难理清M2j的那些单元通过哪些权重与Mj的哪些单元关联,Toolbox里面还是采用卷积(稍作变形)巧妙的解决了这个问题,其代码为:
convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');
rot180表示对矩阵进行180度旋转(可通过行对称交换和列对称交换完成),为什么这里要对卷积核进行旋转,答案是:通过这个旋转,'full'模式下得卷积的正好抓住了前向传输计算上层map单元与卷积和及当期层map的关联关系,需要注意的是matlab的内置函数convn在计算卷积前,会对卷积核进行一次旋转,因此我们之前的所有卷积的计算都对卷积核进行了旋转:
a =
1 1 1
1 1 1
1 1 1
k =
1 2 3
4 5 6
7 8 9
>> convn(a,k,'full')
ans =
1 3 6 5 3
5 12 21 16 9
12 27 45 33 18
11 24 39 28 15
7 15 24 17 9
convn在计算前还会对待卷积矩阵进行0扩展,如果卷积核为k*k,待卷积矩阵为n*n,需要以n*n原矩阵为中心扩展到(n+2(k-1))*(n+2(k-1)),所有上面convn(a,k,'full')的计算过程如下:
实际上convn内部是否旋转对网络训练没有影响,只要内部保持一致(即都要么旋转,要么都不旋转),所有我的卷积实现里面没有对卷积核旋转。如果在convn计算前,先对卷积核旋转180度,然后convn内部又对其旋转180度,相当于卷积核没有变。
为了描述清楚对卷积核旋转180与卷积层的残差的卷积所关联的权重与单元,正是前向计算所关联的权重与单元,我们选一个稍微大一点的卷积核,即假设卷积层采用用3*3的卷积核,其上一层采样层的输出map的大小是5*5,那么前向传输由采样层得到卷积层的过程如下: