热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

揭秘双11丝滑般剁手之路背后的网络监控技术

概要:刚刚结束的2020天猫双11中,MaxCompute交互式分析(下称Hologres)实时计算Flink搭建的云原生实

概要:刚刚结束的2020天猫双11中,MaxCompute交互式分析(下称Hologres)+实时计算Flink搭建的云原生实时数仓首次在核心数据场景落地,为大数据平台创下一项新纪录。借此之际,我们将陆续推出云原生实时数仓双11实战系列内容,本篇将重点介绍Hologres在阿里巴巴网络监控部门成功替换Druid的最佳实践,并助力双11实时网络监控大盘毫秒级响应。

3...
2...
1...
00:00:00 。购物车,结算,提交订单,付款
00:01:00...。滴,您的支付宝消费xxx万元。
亿万人同时参与的千亿级项目,破记录的峰值58万笔/秒,剁手党们在整个交易过程中如丝般顺滑,好像参加了一个假的双11,而这一切的背后都离不开阿里巴巴网络能力的强大支持。随着技术的发展,尤其是近年来云和电商业务的愈发兴盛,基础网络也变得越来越庞大和复杂,如何保障这张膨胀网络的稳定性,提供云上用户畅通无阻的购物体验,对网络系统建设者和运维者说更是极大的考验。
理论上来说,故障不可避免,但是如果能够做到快速发现,定位,修复甚至预防故障,缩短故障时长,即可让用户轻微或无感是稳定性追求的终极目标。2015年的微软提出了pingmesh,成为业界事实的解决方案,但是由于天生的某些缺陷性,导致故障发现时间过长。阿里巴巴网络研发事业部从2017年就开始研发站在世界前沿的探测系统AliPing,AliPing实时系统的出现将阿里故障发现带入了秒级响应,数据采集到处理到大盘呈现最快时间延迟在数秒之间,告警+故障定位分钟级,7*24全天候监控着整个阿里的网络状况。

AliPling的核心架构图如下:

在整个系统中,监控大盘作为故障发现的核心元素,承担着实时呈现网络状况的重任,每一条曲线的起起伏伏,就有可能代表用户的业务在受损, 如何快速实时展示网络状态,并预警/发现网络故障,帮助用户迅速止血,这对于监控团队的监控大盘也是重大的考验。对于监控人员使用的监控大盘来说,困难有多个:

1)数据时效性要求高:需要实时的将处理完的结构化数据(告警,监控)7*24小时的呈现在使用者(GOC, 各个或者监控人员面前,以便及时地发现处理全阿里+蚂蚁的网络故障。
2)数据源复杂:网络数据源众多,业务场景众多,有一分钟数百G的流量监控数据,也有一分钟几十K的IDC网络数据,如何将这些不同种类,不同数据量的业务数据,纳入监控体系发现异常,对整体端到端监控大盘来说也是一种考验。
3)数据指标维度多:对于监控人员来说,需要监控的数据指标维度特别多,可以看作是一个复杂的OLAP查询系统,如何根据自身业务场景从大盘中实时查询所需的业务数据,这对于处理后端数据的OLAP框架也是一个重大挑战。

技术选型

对于监控大盘来说,用户的组合查询条件具有不可预知性,其结构化数据没有办法提前算好,只通过OLAP(联机分析处理)技术,实时对基础数据分析组合,并将结果呈现给用户。Aliping大盘实际就是OLAP技术体现,将不同维度的故障数据(机房、区域、DSW、ASW、PSW、部门、应用等等)通过大盘形式展现在用户面前。

2017年在AliPing系统实施的时候,我们对比了多项OLAP数据库, 其中选择比较有代表性的进行了对比:

1)HIVE
底层基于HDFS存储,将SQL语句分解为MapReduce任务进行查询。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。但是由于底层是HDFS分布式文件系统的限制性,不能进行常见的CUD(对表记录操作)操作,同时Hive需要从已有的数据库或日志进行同步最终入到HDFS文件系统中,当前要做到增量实时同步都相当困难。最重要的是:查询速度慢,无法满足监控大盘秒级相应需求。

2)Kylin
传统OLAP根据数据存储方式的不同分为ROLAP(relational olap)以及MOLAP(multi-dimension olap)。ROLAP 以关系模型的方式存储用作多为分析用的数据,优点在于存储体积小,查询方式灵活,然而缺点也显而易见,每次查询都需要对数据进行聚合计算,为了改善短板,ROLAP使用了列存、并行查询、查询优化、位图索引等技术。Kylin中数据立方的思想就是以空间换时间,通过定义一系列的纬度,对每个纬度的组合进行预先计算并存储。有N个纬度,就会有2的N次种组合。所以最好控制好纬度的数量,因为存储量会随着纬度的增加爆炸式的增长,产生灾难性后果。这个对于庞大的网络数据和不可确定性维度组合,是不可以接受的。

3)ClickHouse
这个是由俄罗斯yandex公司开发的,专门为在线数据分析而设计。根据官方提供的文档来看,ClickHouse 日处理记录数"十亿级"(没测过)。其机制采用列式存储,数据压缩,支持分片,支持索引,并且会将一个计算任务拆分分布在不同分片上并行执行,计算完成后会将结果汇总,支持SQL和联表查询但是支持不够好,支持实时更新,自动多副本同步。总体来说,ClickHouse还算不错,但是由于不够成熟,官方支持度不够,bug也多多,最重要的是集团内也没看到人用,只能放弃

4)Druid
是一种能对历史和实时数据提供亚秒级别的查询的数据存储系统。Druid 支持低延时的数据摄取,灵活的数据探索分析,高性能的数据聚合,简便的水平扩展。适用于数据量大,可扩展能力要求高的分析型查询系统。其机制将热点和实时数据存储在实时节点(Realtime Node)内存中,将历史数据存储在历史节点(history node)的硬盘中,实时+伪实时的结构,保证查询基本都在毫秒级。高速摄入,快速查询正是满足了我们的需求,同时还有通用计算引擎团队的有力支持,在早期我们选择了druid作为了我们监控大盘的OLAP支持系统。

新OLAP网络监控系统

随着业务的复杂化,业务进一步增多,Druid使用过程中也暴露出一系列问题:

1)数据量摄入的瓶颈, 集团上云,流量的引入,使我们数据量激增,数据写入出现了数次大故障
2)由于业务复杂多变,我们需要增加维度数据,Druid增加相对来说过程比较复杂
3)Druid的查询方式不友好,有一套自己的查询语言,对于SQL支持太差,浪费大量时间学习
4)不支持高并发,对于大促来说简直是灾难。有两年双十一,我们只能上线替用户保证监控大盘可用。

随着暴露出的问题越来越多,我们也在寻找一款既能替代Druid解决当前问题,又能满足实时OLAP多维分析场景需求的产品。
也是在集团内其他部门沉淀的最佳实践中知道Hologres,并且了解到Hologres支持行存模式下的高并发点查和列存模式下的实时OLAP多维分析,觉得这一点很贴合我们网络监控系统的要求,于是就抱着试试的心态先去测试体验Hologres。通过全链路的测试和大量的场景数据验证,能满足我们场景需求,于是就决定上线Hologres至正式生产中。

改造后的新OLAP监控系统如下图所示,整体的数据流程大致如下:

  • Kafka实时采集网络相关的监控指标数据,并写入Flink中轻度汇总加工
  • Flink将初步加工完成的基础粒度的实时数据实时写入Hologres中,由Hologres提供统一的存储
  • Hologres直接实时对接监控大屏,大屏实时展示多种监控指标的变化情况,不符合预期的数据实时报警,相应的业务人员立即排查问题并解决。

业务价值

今年也是Hologres第一年参与AIS网络故障监控的双11作战,作为新秀交出了令我们比较满意的答卷。整体来说对于业务的价值主要表现如下:

1)TB级数据毫秒级响应
对于实时监控来说,时间就是生命线,越快发现故障就能越快止血,如何根据用户输入的复杂组合条件,在TB级数据中,仅仅以秒级甚至是毫秒级的响应筛选出符合要求的数据(OLAP),这对很多系统来说都是很大的挑战,而实战证明,合理的利用Hologres索引功能,并通过资源的合理分配等,在OLAP实时性上完美的满足了监控业务的需要。

2)支持高并发
双11的监控大屏往往需要查询查询历史数据,并根据历史数据做报警预测,以往的系统最多只能支撑不到数十用户的查询(数10天数据),而Hologres能支撑数百用户的大规模并行查询并且依旧没有达到上限,在今年双11的0点时,面对数百倍的平时数据量冲击,监控曲线依旧平滑如旧,毫无滞涩之感

3)写入性能高
对于之前数十万/秒,数百万/秒的写入能力,Druid的表现不是很好容易出现涌塞现象,而Hologres可以轻松做到,这也就轻松解决了我们的实时写入瓶颈问题。

4)学习成本低
Hologres兼容Postgres,全SQL支持,非常方便新用户上手,无需再花费时间和精力去研究语法。同时Hologres对于BI工具的兼容性很好,无需做改造就能对接监控大屏,节约大量时间。

对每一个天猫双11剁手人来说,每一次的丝滑般购物体验都离不开阿里网络能力的支撑,而监控大盘就是阿里网络状况的眼睛。Hologres作为大盘的核心环节,给大盘持续赋能。但是,作为一个新生儿,HOLO仍然有一些不太成熟的地方,在透明升级、稳定性等环节上依存在提升空间。我们也愿意同Hologres一起成长,期待明年双11 Hologres更优秀的表现。

作者简介:唐傥,隶属网络研发事业部网络,现从事网络稳定性开发研究工作,前北邮研究生导师,拥有数个网络和算法相关专利。

 

原文链接

本文为阿里云原创内容,未经允许不得转载。


推荐阅读
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • 深入解析:存储技术的演变与发展
    本文探讨了从单机文件系统到分布式文件系统的存储技术发展过程,详细解释了各种存储模型及其特点。 ... [详细]
  • Redis:缓存与内存数据库详解
    本文介绍了数据库的基本分类,重点探讨了关系型与非关系型数据库的区别,并详细解析了Redis作为非关系型数据库的特点、工作模式、优点及持久化机制。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在前一篇文章《Hadoop》系列之“踽踽独行”(二)中,我们详细探讨了云计算的核心概念。本章将重点转向物联网技术,全面解析其基本原理、应用场景及未来发展前景。通过深入分析物联网的架构和技术栈,我们将揭示其在智能城市、工业自动化和智能家居等领域的广泛应用潜力。此外,还将讨论物联网面临的挑战,如数据安全和隐私保护等问题,并展望其在未来技术融合中的重要角色。 ... [详细]
  • 【漫画解析】数据已删,存储空间为何未减?揭秘背后真相
    在数据迁移过程中,即使删除了原有数据,存储空间却未必会相应减少。本文通过漫画形式解析了这一现象背后的真相。具体来说,使用 `mysqldump` 命令进行数据导出时,该工具作为 MySQL 的逻辑备份工具,通过连接数据库并查询所需数据,将其转换为 SQL 语句。然而,这种操作并不会立即释放存储空间,因为数据库系统可能保留了已删除数据的碎片信息。文章进一步探讨了如何优化存储管理,以确保数据删除后能够有效回收存储空间。 ... [详细]
  • 本文探讨了在一个物理隔离的环境中构建数据交换平台所面临的挑战,包括但不限于数据加密、传输监控及确保文件交换的安全性和可靠性。同时,作者结合自身项目经验,分享了项目规划、实施过程中的关键决策及其背后的思考。 ... [详细]
  • 深入理解云计算与大数据技术
    本文详细探讨了云计算与大数据技术的关键知识点,包括大数据处理平台、社会网络大数据、城市大数据、工业大数据、教育大数据、数据开放与共享的应用,以及搜索引擎与Web挖掘、推荐技术的研究及应用。文章还涵盖了云计算的基础概念、特点和服务类型分类。 ... [详细]
  • 协程作为一种并发设计模式,能有效简化Android平台上的异步代码处理。自Kotlin 1.3版本引入协程以来,这一特性基于其他语言的成熟理念,为开发者提供了新的工具,以增强应用的响应性和效率。 ... [详细]
  • 本文探讨了一种统一的语义数据模型,旨在支持物联网、建筑及企业环境下的数据转换。该模型强调简洁性和可扩展性,以促进不同行业间的插件化和互操作性。对于智能硬件开发者而言,这一模型提供了重要的参考价值。 ... [详细]
  • 本文介绍如何通过整合SparkSQL与Hive来构建高效的用户画像环境,提高数据处理速度和查询效率。 ... [详细]
  • 本文介绍了Hadoop的核心组件,包括高可靠性和高吞吐量的分布式文件系统HDFS、分布式的离线并行计算框架MapReduce、作业调度与集群资源管理框架YARN以及支持其他模块的工具模块Common。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • 2012年9月12日优酷土豆校园招聘笔试题目解析与备考指南
    2012年9月12日,优酷土豆校园招聘笔试题目解析与备考指南。在选择题部分,有一道题目涉及中国人的血型分布情况,具体为A型30%、B型20%、O型40%、AB型10%。若需确保在随机选取的样本中,至少有一人为B型血的概率不低于90%,则需要选取的最少人数是多少?该问题不仅考察了概率统计的基本知识,还要求考生具备一定的逻辑推理能力。 ... [详细]
  • Zookeeper作为Apache Hadoop生态系统中的一个重要组件,主要致力于解决分布式应用中的常见数据管理难题。它提供了统一的命名服务、状态同步服务以及集群管理功能,有效提升了分布式系统的可靠性和可维护性。此外,Zookeeper还支持配置管理和临时节点管理,进一步增强了其在复杂分布式环境中的应用价值。 ... [详细]
author-avatar
你的依靠isme
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有