热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

解决android加载bitmap内存溢出的方法

网上有很多解决android加载bitmap内存溢出的方法,搜了一圈做下整理总结。项目里需求是拍摄多图之后上传,部分手机会内存溢出。常用一种解决方法:即将载入的图片缩小,这种方式以牺牲图片的质量为代价

网上有很多解决android加载bitmap内存溢出的方法,搜了一圈做下整理总结。项目里需求是拍摄多图之后上传,部分手机会内存溢出。

常用一种解决方法:即将载入的图片缩小,这种方式以牺牲图片的质量为代价。在BitmapFactory中有一个内部类BitmapFactory.Options,其中当options.inSampleSize值>1时,根据文档:

 

If set to a value > 1, requests the decoder to subsample the original image, returning a smaller image to save memory. (1 -> decodes full size; 2 -> decodes 1/4th size; 4 -> decode 1/16th size). Because you rarely need to show and have full size bitmap images on your phone. For manipulations smaller sizes are usually enough.
options.inSampleSize是以2的指数的倒数被进行放缩

现在问题是怎么确定inSampleSize的值?每张图片的放缩大小的比例应该是不一样的!这样的话就要运行时动态确定。在BitmapFactory.Options中提供了另一个成员inJustDecodeBounds。
设置inJustDecodeBounds为true后,decodeFile并不分配空间,但可计算出原始图片的长度和宽度,即opts.width和 opts.height。有了这两个参数,再通过一定的算法,即可得到一个恰当的inSampleSize。Android提供了一种动态计算的方法,见 computeSampleSize().

 

public static int computeSampleSize(BitmapFactory.Options options,
        int minSideLength, int maxNumOfPixels) {
    int initialSize = computeInitialSampleSize(options, minSideLength,
            maxNumOfPixels);

    int roundedSize;
    if (initialSize <= 8) {
        roundedSize = 1;
        while (roundedSize             roundedSize <<= 1;
        }
    } else {
        roundedSize = (initialSize + 7) / 8 * 8;
    }

    return roundedSize;
}

private static int computeInitialSampleSize(BitmapFactory.Options options,
        int minSideLength, int maxNumOfPixels) {
    double w = options.outWidth;
    double h = options.outHeight;

    int lowerBound = (maxNumOfPixels == -1) ? 1 :
            (int) Math.ceil(Math.sqrt(w * h / maxNumOfPixels));
    int upperBound = (minSideLength == -1) ? 128 :
            (int) Math.min(Math.floor(w / minSideLength),
            Math.floor(h / minSideLength));

    if (upperBound         return lowerBound;
    }

    if ((maxNumOfPixels == -1) &&
            (minSideLength == -1)) {
        return 1;
    } else if (minSideLength == -1) {
        return lowerBound;
    } else {
        return upperBound;
    }
}   

 

以上只做为参考,我们只要用这函数即可,opts.inSampleSize = computeSampleSize(opts, -1, 128*128);

 

 

 

要点:
1、用decodeFileDescriptor()来生成bimap比decodeFile()省内存

 

FileInputStream is = = new FileInputStream(path);
bmp = BitmapFactory.decodeFileDescriptor(is.getFD(), null, opts);

 

替换

 

 Bitmap bmp = BitmapFactory.decodeFile(imageFile, opts);
    imageView.setImageBitmap(bmp);

 

 

原因:
查看BitmapFactory的源码,对比一下两者的实现,可以发现decodeFile()最终是以流的方式生成bitmap 

decodeFile源码:

 

    public static Bitmap decodeFile(String pathName, Options opts) {
        Bitmap bm = null;
        InputStream stream = null;
        try {
            stream = new FileInputStream(pathName);
            bm = decodeStream(stream, null, opts);
        } catch (Exception e) {
            /*  do nothing.
                If the exception happened on open, bm will be null.
            */
        } finally {
            if (stream != null) {
                try {
                    stream.close();
                } catch (IOException e) {
                    // do nothing here
                }
            }
        }
        return bm;
    }

 

 

 

decodeFileDescriptor的源码,可以找到native本地方法decodeFileDescriptor,通过底层生成bitmap

decodeFileDescriptor源码:

 

    public static Bitmap decodeFileDescriptor(FileDescriptor fd, Rect outPadding, Options opts) {
        if (nativeIsSeekable(fd)) {
            Bitmap bm = nativeDecodeFileDescriptor(fd, outPadding, opts);
            if (bm == null && opts != null && opts.inBitmap != null) {
                throw new IllegalArgumentException("Problem decoding into existing bitmap");
            }
            return finishDecode(bm, outPadding, opts);
        } else {
            FileInputStream fis = new FileInputStream(fd);
            try {
                return decodeStream(fis, outPadding, opts);
            } finally {
                try {
                    fis.close();
                } catch (Throwable t) {/* ignore */}
            }
        }
    }

 private static native Bitmap nativeDecodeFileDescriptor(FileDescriptor fd,Rect padding, Options opts);

 

2、当在android设备中载入较大图片资源时,可以创建一些临时空间,将载入的资源载入到临时空间中。

 

opts.inTempStorage = new byte[16 * 1024];

 

 

?

 

 

完整代码:

 

public static OutputStream decodeBitmap(String path) {

  BitmapFactory.Options opts = new BitmapFactory.Options();
  opts.inJustDecodeBounds = true;// 设置成了true,不占用内存,只获取bitmap宽高
  BitmapFactory.decodeFile(path, opts);
  opts.inSampleSize = computeSampleSize(opts, -1, 1024 * 800);

  opts.inJustDecodeBounds = false;// 这里一定要将其设置回false,因为之前我们将其设置成了true
  opts.inPurgeable = true;
  opts.inInputShareable = true;
  opts.inDither = false;
  opts.inPurgeable = true;
  opts.inTempStorage = new byte[16 * 1024];
  FileInputStream is = null;
  Bitmap bmp = null;
  InputStream ins = null;
  ByteArrayOutputStream baos = null;
  try {
   is = new FileInputStream(path);
   bmp = BitmapFactory.decodeFileDescriptor(is.getFD(), null, opts);    double scale = getScaling(opts.outWidth * opts.outHeight, 1024 * 600);
   Bitmap bmp2 = Bitmap.createScaledBitmap(bmp,
     (int) (opts.outWidth * scale),
     (int) (opts.outHeight * scale), true);
   bmp.recycle();
   baos = new ByteArrayOutputStream();
   bmp2.compress(Bitmap.CompressFormat.JPEG, 100, baos);
   bmp2.recycle();
   return baos;
  } catch (FileNotFoundException e) {
   e.printStackTrace();
  } catch (IOException e) {
   e.printStackTrace();
  } finally {
   try {
    is.close();
    ins.close();
    baos.close();
   } catch (IOException e) {
    e.printStackTrace();
   }
   System.gc();
  }
  return baos;
}

private static double getScaling(int src, int des) {
/**
* 目标尺寸÷原尺寸 sqrt开方,得出宽高百分比
*/
    double scale = Math.sqrt((double) des / (double) src);
    return scale;
}



推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本教程涵盖OpenGL基础操作及直线光栅化技术,包括点的绘制、简单图形绘制、直线绘制以及DDA和中点画线算法。通过逐步实践,帮助读者掌握OpenGL的基本使用方法。 ... [详细]
  • 基于KVM的SRIOV直通配置及性能测试
    SRIOV介绍、VF直通配置,以及包转发率性能测试小慢哥的原创文章,欢迎转载目录?1.SRIOV介绍?2.环境说明?3.开启SRIOV?4.生成VF?5.VF ... [详细]
  • 本文基于刘洪波老师的《英文词根词缀精讲》,深入探讨了多个重要词根词缀的起源及其相关词汇,帮助读者更好地理解和记忆英语单词。 ... [详细]
  • Android 渐变圆环加载控件实现
    本文介绍了如何在 Android 中创建一个自定义的渐变圆环加载控件,该控件已在多个知名应用中使用。我们将详细探讨其工作原理和实现方法。 ... [详细]
  • 360SRC安全应急响应:从漏洞提交到修复的全过程
    本文详细介绍了360SRC平台处理一起关键安全事件的过程,涵盖从漏洞提交、验证、排查到最终修复的各个环节。通过这一案例,展示了360在安全应急响应方面的专业能力和严谨态度。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 基因组浏览器中的Wig格式解析
    本文详细介绍了Wiggle(Wig)格式及其在基因组浏览器中的应用,涵盖variableStep和fixedStep两种主要格式的特点、适用场景及具体使用方法。同时,还提供了关于数据值和自定义参数的补充信息。 ... [详细]
  • 火星商店问题:线段树分治与持久化Trie树的应用
    本题涉及编号为1至n的火星商店,每个商店有一个永久商品价值v。操作包括每天在指定商店增加一个新商品,以及查询某段时间内某些商店中所有商品(含永久商品)与给定密码值的最大异或结果。通过线段树分治和持久化Trie树来高效解决此问题。 ... [详细]
  • 本文深入探讨了Linux系统中网卡绑定(bonding)的七种工作模式。网卡绑定技术通过将多个物理网卡组合成一个逻辑网卡,实现网络冗余、带宽聚合和负载均衡,在生产环境中广泛应用。文章详细介绍了每种模式的特点、适用场景及配置方法。 ... [详细]
  • RecyclerView初步学习(一)
    RecyclerView初步学习(一)ReCyclerView提供了一种插件式的编程模式,除了提供ViewHolder缓存模式,还可以自定义动画,分割符,布局样式,相比于传统的ListVi ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 网络运维工程师负责确保企业IT基础设施的稳定运行,保障业务连续性和数据安全。他们需要具备多种技能,包括搭建和维护网络环境、监控系统性能、处理突发事件等。本文将探讨网络运维工程师的职业前景及其平均薪酬水平。 ... [详细]
  • 帝国CMS多图上传插件详解及使用指南
    本文介绍了一款用于帝国CMS的多图上传插件,该插件通过Flash技术实现批量图片上传功能,显著提升了多图上传效率。文章详细说明了插件的安装、配置和使用方法。 ... [详细]
  • 本文介绍如何使用 Python 获取文件和图片的创建、修改及拍摄日期。通过多种方法,如 PIL 库的 _getexif() 函数和 os 模块的 getmtime() 和 stat() 方法,详细讲解了这些技术的应用场景和注意事项。 ... [详细]
author-avatar
whucad
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有