作者:城市学院艺术英语 | 来源:互联网 | 2024-10-27 20:51
将一个集合划分为两个非空子集,使得子集和的差最大原文:https://www . geeksforgeeks . org/par
将一个集合划分为两个非空子集,使得子集和的差最大
原文:https://www . geeksforgeeks . org/partition-a-set-in-two-non-empty-subset-sums-different-of-subset-sums-max/
给定一组整数 S ,任务是将给定的集合分成两个非空集合 S1 和 S2 ,使得它们的和之间的绝对差最大,即 abs(和(S1)–和(S2)) 最大。
示例:
输入: S[] = { 1,2,1 }
输出: 2
说明:
子集为{1}和{2,1 }。它们的绝对差是
ABS(1 –( 2+1))= 2,最大。
输入: S[] = { -2,3,-1,5 }
输出: 11
说明:
子集为{-1,-2}和{3,5 }。它们的绝对差是
abs((-1,-2)–(3+5))= 11,最大。
天真法:生成并存储整数集合的所有子集,求子集之和与集合之和与该子集之和之差的最大绝对差,即ABS(sum(S1)–(totalSum–sum(S1))。
时间复杂度:O(2N)
辅助空间: O(2 N )
高效方法:优化幼稚方法,思路是用一些数学观察。这个问题可以分为两种情况:
- 如果集合只包含正整数或负整数,那么最大差值是通过拆分集合得到的,使得一个子集只包含集合的最小元素,而另一个子集包含集合的所有剩余元素,即,
ABS((total sum–min(S))–min(S))或ABS(total sum–2×min(S))、其中 S** 为整数集
- 如果集合同时包含正整数和负整数,则最大差值通过拆分集合来获得,使得一个子集包含所有正整数,而另一个子集包含所有负整数,即,
ABS(sum(S1)–sum(S2)或ABS(sum(S)其中 S1、S2 分别为正整数和负整数的集合。
下面是上述方法的实现:
C++
// C++ Program for above approach
#include
using namespace std;
// Function to return the maximum
// difference between the subset sums
int maxDiffSubsets(int arr[], int N)
{
// Stores the total
// sum of the array
int totalSum = 0;
// Checks for positive
// and negative elements
bool pos = false, neg = false;
// Stores the minimum element
// from the given array
int min = INT_MAX;
// Traverse the array
for (int i = 0; i {
// Calculate total sum
totalSum += abs(arr[i]);
// Mark positive element
// present in the set
if (arr[i] > 0)
pos = true;
// Mark negative element
// present in the set
if (arr[i] <0)
neg = true;
// Find the minimum
// element of the set
if (arr[i] min = arr[i];
}
// If the array contains both
// positive and negative elements
if (pos && neg)
return totalSum;
// Otherwise
else
return totalSum - 2 * min;
}
// Driver Code
int main()
{
// Given the array
int S[] = {1, 2, 1};
// Length of the array
int N = sizeof(S) / sizeof(S[0]);
if (N <2)
cout <<("Not Possible");
else
// Function Call
cout <<(maxDiffSubsets(S, N));
}
// This code is contributed by Chitranayal
Java 语言(一种计算机语言,尤用于创建网站)
// Java Program for above approach
import java.util.*;
import java.lang.*;
class GFG {
// Function to return the maximum
// difference between the subset sums
static int maxDiffSubsets(int[] arr)
{
// Stores the total
// sum of the array
int totalSum = 0;
// Checks for positive
// and negative elements
boolean pos = false, neg = false;
// Stores the minimum element
// from the given array
int min = Integer.MAX_VALUE;
// Traverse the array
for (int i = 0; i // Calculate total sum
totalSum += Math.abs(arr[i]);
// Mark positive element
// present in the set
if (arr[i] > 0)
pos = true;
// Mark negative element
// present in the set
if (arr[i] <0)
neg = true;
// Find the minimum
// element of the set
if (arr[i] min = arr[i];
}
// If the array contains both
// positive and negative elements
if (pos && neg)
return totalSum;
// Otherwise
else
return totalSum - 2 * min;
}
// Driver Code
public static void main(String[] args)
{
// Given the array
int[] S = { 1, 2, 1 };
// Length of the array
int N = S.length;
if (N <2)
System.out.println("Not Possible");
else
// Function Call
System.out.println(maxDiffSubsets(S));
}
}
Python 3
# Python3 program for above approach
import sys
# Function to return the maximum
# difference between the subset sums
def maxDiffSubsets(arr):
# Stores the total
# sum of the array
totalSum = 0
# Checks for positive
# and negative elements
pos = False
neg = False
# Stores the minimum element
# from the given array
min = sys.maxsize
# Traverse the array
for i in range(len(arr)):
# Calculate total sum
totalSum += abs(arr[i])
# Mark positive element
# present in the set
if (arr[i] > 0):
pos = True
# Mark negative element
# present in the set
if (arr[i] <0):
neg = True
# Find the minimum
# element of the set
if (arr[i] min = arr[i]
# If the array contains both
# positive and negative elements
if (pos and neg):
return totalSum
# Otherwise
else:
return totalSum - 2 * min
# Driver Code
if __name__ == '__main__':
# Given the array
S = [ 1, 2, 1 ]
# Length of the array
N = len(S)
if (N <2):
print("Not Possible")
else:
# Function Call
print(maxDiffSubsets(S))
# This code is contributed by mohit kumar 29
C
// C# Program for above approach
using System;
class GFG{
// Function to return the maximum
// difference between the subset sums
static int maxDiffSubsets(int[] arr)
{
// Stores the total
// sum of the array
int totalSum = 0;
// Checks for positive
// and negative elements
bool pos = false, neg = false;
// Stores the minimum element
// from the given array
int min = int.MaxValue;
// Traverse the array
for (int i = 0; i {
// Calculate total sum
totalSum += Math.Abs(arr[i]);
// Mark positive element
// present in the set
if (arr[i] > 0)
pos = true;
// Mark negative element
// present in the set
if (arr[i] <0)
neg = true;
// Find the minimum
// element of the set
if (arr[i] min = arr[i];
}
// If the array contains both
// positive and negative elements
if (pos && neg)
return totalSum;
// Otherwise
else
return totalSum - 2 * min;
}
// Driver Code
public static void Main(String[] args)
{
// Given the array
int[] S = {1, 2, 1};
// Length of the array
int N = S.Length;
if (N <2)
Console.WriteLine("Not Possible");
else
// Function Call
Console.WriteLine(maxDiffSubsets(S));
}
}
// This code is contributed by Rajput-Ji
java 描述语言
Output:
2
时间复杂度:O(N)
T5辅助空间:** O(1)