热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

简单机器学习人脸识别工具face-recognitionpython小试,一行代码实现人脸识别

摘要:1行代码实现人脸识别,1.首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片。其中每个人一张图片,图片以人的名字命名。2.接下来,你需要准备另一个文件夹,里面是你要识别的图片
摘要: 1行代码实现人脸识别,1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片。其中每个人一张图片,图片以人的名字命名。2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片。3. 然后你就可以运行face_recognition命令了,把刚刚准备的两个文件夹作为参数传入,命令就会返回需要识别的图片中都出现了谁,1行代码足以!!!

环境要求:
  • Ubuntu17.10
  • Python 2.7.14

环境搭建:

1. 安装 Ubuntu17.10 > 安装步骤在这里

2. 安装 Python2.7.14 (Ubuntu17.10 默认Python版本为2.7.14)

3. 安装 git 、cmake 、 python-pip

# 安装 git $ sudo apt-get install -y git # 安装 cmake $ sudo apt-get install -y cmake # 安装 python-pip $ sudo apt-get install -y python-pip 

4. 安装编译dlib

安装face_recognition这个之前需要先安装编译dlib

# 编译dlib前先安装 boost $ sudo apt-get install libboost-all-dev # 开始编译dlib # 克隆dlib源代码 $ git clone https://github.com/davisking/dlib.git $ cd dlib $ mkdir build $ cd build $ cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIOnS=1 $ cmake --build .(注意中间有个空格) $ cd .. $ python setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA 

5. 安装 face_recognition

# 安装 face_recognition $ pip install face_recognition # 安装face_recognition过程中会自动安装 numpy、scipy 等 

环境搭建完成后,在终端输入 face_recognition 命令查看是否成功

环境搭建完成后,在终端输入 face_recognition 命令查看是否成功

实现人脸识别:

示例一(1行代码实现人脸识别):

1. 首先你需要提供一个文件夹,里面是所有你希望系统认识的人的图片。其中每个人一张图片,图片以人的名字命名:

known_people文件夹下有babe、成龙、容祖儿的照片

known_people文件夹下有babe、成龙、容祖儿的照片

2. 接下来,你需要准备另一个文件夹,里面是你要识别的图片:

unknown_pic文件夹下是要识别的图片,其中韩红是机器不认识的

unknown_pic文件夹下是要识别的图片,其中韩红是机器不认识的

3. 然后你就可以运行face_recognition命令了,把刚刚准备的两个文件夹作为参数传入,命令就会返回需要识别的图片中都出现了谁:

识别成功!!!

识别成功!!!


示例二(识别图片中的所有人脸并显示出来):

# filename : find_faces_in_picture.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition # 将jpg文件加载到numpy 数组中 image = face_recognition.load_image_file("/opt/face/unknown_pic/all_star.jpg") # 使用默认的给予HOG模型查找图像中所有人脸 # 这个方法已经相当准确了,但还是不如CNN模型那么准确,因为没有使用GPU加速 # 另请参见: find_faces_in_picture_cnn.py face_locatiOns= face_recognition.face_locations(image) # 使用CNN模型 # face_locatiOns= face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn") # 打印:我从图片中找到了 多少 张人脸 print("I found {} face(s) in this photograph.".format(len(face_locations))) # 循环找到的所有人脸 for face_location in face_locations: # 打印每张脸的位置信息 top, right, bottom, left = face_location print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) # 指定人脸的位置信息,然后显示人脸图片 face_image = image[top:bottom, left:right] pil_image = Image.fromarray(face_image) pil_image.show() 

如下图为用于识别的图片

用于识别的图片

# 执行python文件 $ python find_faces_in_picture.py 

从图片中识别出7张人脸,并显示出来,如下图

从图片中识别出7张人脸,并显示出来


示例三(自动识别人脸特征):

# filename : find_facial_features_in_picture.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image, ImageDraw # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition # 将jpg文件加载到numpy 数组中 image = face_recognition.load_image_file("biden.jpg") #查找图像中所有面部的所有面部特征 face_landmarks_list = face_recognition.face_landmarks(image) print("I found {} face(s) in this photograph.".format(len(face_landmarks_list))) for face_landmarks in face_landmarks_list: #打印此图像中每个面部特征的位置 facial_features = [ 'chin', 'left_eyebrow', 'right_eyebrow', 'nose_bridge', 'nose_tip', 'left_eye', 'right_eye', 'top_lip', 'bottom_lip' ] for facial_feature in facial_features: print("The {} in this face has the following points: {}".format(facial_feature, face_landmarks[facial_feature])) #让我们在图像中描绘出每个人脸特征! pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image) for facial_feature in facial_features: d.line(face_landmarks[facial_feature], hljs-number">5) pil_image.show() 

自动识别出人脸特征(轮廓)

自动识别出人脸特征


示例四(识别人脸鉴定是哪个人):

# filename : recognize_faces_in_pictures.py # -*- conding: utf-8 -*- # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition #将jpg文件加载到numpy数组中 babe_image = face_recognition.load_image_file("/opt/face/known_people/babe.jpeg") Rong_zhu_er_image = face_recognition.load_image_file("/opt/face/known_people/Rong zhu er.jpg") unknown_image = face_recognition.load_image_file("/opt/face/unknown_pic/babe2.jpg") #获取每个图像文件中每个面部的面部编码 #由于每个图像中可能有多个面,所以返回一个编码列表。 #但是由于我知道每个图像只有一个脸,我只关心每个图像中的第一个编码,所以我取索引0。 babe_face_encoding = face_recognition.face_encodings(babe_image)[0] Rong_zhu_er_face_encoding = face_recognition.face_encodings(Rong_zhu_er_image)[0] unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0] known_faces = [ babe_face_encoding, Rong_zhu_er_face_encoding ] #结果是True/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果 results = face_recognition.compare_faces(known_faces, unknown_face_encoding) print("这个未知面孔是 Babe 吗? {}".format(results[0])) print("这个未知面孔是 容祖儿 吗? {}".format(results[1])) print("这个未知面孔是 我们从未见过的新面孔吗? {}".format(not True in results)) 

显示结果下如图

显示结果如图


示例五(识别人脸特征并美颜):

# filename : digital_makeup.py # -*- coding: utf-8 -*- # 导入pil模块 ,可用命令安装 apt-get install python-Imaging from PIL import Image, ImageDraw # 导入face_recogntion模块,可用命令安装 pip install face_recognition import face_recognition #将jpg文件加载到numpy数组中 image = face_recognition.load_image_file("biden.jpg") #查找图像中所有面部的所有面部特征 face_landmarks_list = face_recognition.face_landmarks(image) for face_landmarks in face_landmarks_list: pil_image = Image.fromarray(image) d = ImageDraw.Draw(pil_image, 'RGBA') #让眉毛变成了一场噩梦 d.polygon(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 128)) d.polygon(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 128)) d.line(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 150), hljs-number">5) d.line(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 150), hljs-number">5) #光泽的嘴唇 d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128)) d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128)) d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), hljs-number">8) d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), hljs-number">8) #闪耀眼睛 d.polygon(face_landmarks['left_eye'], fill=(255, 255, 255, 30)) d.polygon(face_landmarks['right_eye'], fill=(255, 255, 255, 30)) #涂一些眼线 d.line(face_landmarks['left_eye'] + [face_landmarks['left_eye'][0]], fill=(0, 0, 0, 110), hljs-number">6) d.line(face_landmarks['right_eye'] + [face_landmarks['right_eye'][0]], fill=(0, 0, 0, 110), hljs-number">6) pil_image.show() 

美颜前后对比如下图

美颜前后对比


推荐阅读
  • 在软件开发过程中,经常需要将多个项目或模块进行集成和调试,尤其是当项目依赖于第三方开源库(如Cordova、CocoaPods)时。本文介绍了如何在Xcode中高效地进行多项目联合调试,分享了一些实用的技巧和最佳实践,帮助开发者解决常见的调试难题,提高开发效率。 ... [详细]
  • 本文详细介绍了 PHP 中对象的生命周期、内存管理和魔术方法的使用,包括对象的自动销毁、析构函数的作用以及各种魔术方法的具体应用场景。 ... [详细]
  • 使用 ListView 浏览安卓系统中的回收站文件 ... [详细]
  • 题目描述:牛客网新员工Fish每天早上都会拿着一本英文杂志,在本子上写下一些句子。他的同事Cat对这些句子非常感兴趣,但发现这些句子的单词顺序被反转了。例如,“student. a am I”实际上是“I am a student.”。Cat请求你帮助他恢复这些句子的正常顺序。 ... [详细]
  • 通过将常用的外部命令集成到VSCode中,可以提高开发效率。本文介绍如何在VSCode中配置和使用自定义的外部命令,从而简化命令执行过程。 ... [详细]
  • 在 CentOS 6.4 上安装 QT5 并启动 Qt Creator 时,可能会遇到缺少 GLIBCXX_3.4.15 的问题。这是由于系统中的 libstdc++.so.6 版本过低。本文将详细介绍如何通过更新 GCC 版本来解决这一问题。 ... [详细]
  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理_python
    本文带你了解了位图的实现,布隆过滤器的原理及Python中的使用,以及布隆过滤器如何应对Redis中的缓存穿透,相信你对布隆过滤 ... [详细]
  • 本文介绍了几种常用的图像相似度对比方法,包括直方图方法、图像模板匹配、PSNR峰值信噪比、SSIM结构相似性和感知哈希算法。每种方法都有其优缺点,适用于不同的应用场景。 ... [详细]
  • 应用链时代,详解 Avalanche 与 Cosmos 的差异 ... [详细]
  • window下的python安装插件,Go语言社区,Golang程序员人脉社 ... [详细]
  • 浏览器作为我们日常不可或缺的软件工具,其背后的运作机制却鲜为人知。本文将深入探讨浏览器内核及其版本的演变历程,帮助读者更好地理解这一关键技术组件,揭示其内部运作的奥秘。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • Android 构建基础流程详解
    Android 构建基础流程详解 ... [详细]
  • MATLAB字典学习工具箱SPAMS:稀疏与字典学习的详细介绍、配置及应用实例
    SPAMS(Sparse Modeling Software)是一个强大的开源优化工具箱,专为解决多种稀疏估计问题而设计。该工具箱基于MATLAB,提供了丰富的算法和函数,适用于字典学习、信号处理和机器学习等领域。本文将详细介绍SPAMS的配置方法、核心功能及其在实际应用中的典型案例,帮助用户更好地理解和使用这一工具箱。 ... [详细]
  • 在 CentOS 7 系统中安装 Scrapy 时遇到了一些挑战。尽管 Scrapy 在 Ubuntu 上安装简便,但在 CentOS 7 上需要额外的配置和步骤。本文总结了常见问题及其解决方案,帮助用户顺利安装并使用 Scrapy 进行网络爬虫开发。 ... [详细]
author-avatar
小宇宙
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有