热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

【架构师修炼之路】

本文目录引言本文主要介绍Redis集群主节点故障的解决方案:哨兵机制.解决什么问题Redis集群中,master主节点发生故障怎么办?Redis主从拓扑哨兵(Sentinel)主要
本文目录

引言

本文主要介绍 Redis 集群主节点故障的解决方案: 哨兵机制.

解决什么问题

Redis 集群中, master 主节点发生故障怎么办?

Redis主从拓扑

哨兵(Sentinel)主要是为了解决在主从复制架构中出现宕机的情况,主要分为两种情况:

1).从Redis宕机

这个相对而言比较简单,在Redis中从库重新启动后会自动加入到主从架构中,自动完成同步数据。在Redis2.8版本后,主从断线后恢复
的情况下实现增量复制。

2).主Redis宕机

这个相对而言就会复杂一些,需要以下2步才能完成
a. 在从数据库中执行SLAVEOF NO ONE命令,断开主从关系并且提升为主库继续服务
b. 第二步,将主库重新启动后,执行SLAVEOF命令,将其设置为其他库的从库,这时数据就能更新回来

由于这个手动完成恢复的过程其实是比较麻烦的并且容易出错,所以Redis提供的哨兵(sentinel)的功能来解决.

实现目标

实现 redis 故障转移的自动化。
自动发现,自动转移。
不需要人工参与。

架构拓扑

Redis Sentinel 是一个分布式系统,为Redis提供高可用性解决方案。可以在一个架构中运行多个 Sentinel 进程(progress), 这些进程使用流言协议 (gossip protocols) 来接收关于主服务器是否下线的信息, 并使用投票协议(agreement protocols)来决定是否执行自动故 障迁移, 以及选择哪个从服务器作为新的主服务器。

核心思想

Sentinel(哨兵)是Redis 的高可用性解决方案:由一个或多个Sentinel 实例 组成的Sentinel 系统可以监视任意多个主服务器,以及这些主服务器属下的所有从服务器,并在被监视的主服务器进入下线状态时,自动将下线主服务器属下的某个从服务器升级为新的主服务器。

如图所示

在Server1 掉线后:

升级Server2 为新的主服务器:

Redis 的 Sentinel 系统用于管理多个 Redis 服务器(instance) 该系统执行以下三个任务:

  • 监控(Monitoring): Sentinel 会不断地定期检查你的主服务器和从服务器是否运作正常。

  • 提醒(Notification): 当被监控的某个 Redis 服务器出现问题时, Sentinel 可以通过 API 向管理员或者其他应用程序发送通知。

  • 自动故障迁移(Automaticfailover): 当一个主服务器不能正常工作时, Sentinel 会开始一次自动故障迁移操作, 它会将失效主服务器的其中 一个从服务器升级为新的主服务器, 并让失效主服务器的其他从服务器改为复制新的主服务器; 当客 户端试图连接失效的主服务器时, 集群也会向客户端返回新主服务器的地址, 使得集群可以使用新主 服务器代替失效服务器。

哨兵leader选举算法

如果主节点被判定为客观下线之后,就要选取一个哨兵节点来完成后面的故障转移工作,选举出一个leader的流程如下:

a)每个在线的哨兵节点都可以成为领导者,当它确认(比如哨兵3)主节点下线时,会向其它哨兵发is-master-down-by-addr命令,征求判断并要求将自己设置为领导者,由领导者处理故障转移;

b)当其它哨兵收到此命令时,可以同意或者拒绝它成为领导者;

c)如果哨兵3发现自己在选举的票数大于等于num(sentinels)/2+1时,将成为领导者,如果没有超过,继续选举…………

主观下线:所谓主观下线,就是单个sentinel认为某个服务下线(有可能是接收不到订阅,之间的网络不通等等原因)。

sentinel会以每秒一次的频率向所有与其建立了命令连接的实例(master,从服务,其他sentinel)发ping命令,通过判断ping回复是有效回复,还是无效回复来判断实例时候在线(对该sentinel来说是“主观在线”)。

sentinel配置文件中的down-after-milliseconds设置了判断主观下线的时间长度,如果实例在down-after-milliseconds毫秒内,返回的都是无效回复,那么sentinel回认为该实例已(主观)下线,修改其flags状态为SRI_S_DOWN。如果多个sentinel监视一个服务,有可能存在多个sentinel的down-after-milliseconds配置不同,这个在实际生产中要注意。

客观下线:当主观下线的节点是主节点时,此时该哨兵3节点会通过指令sentinel is-masterdown-by-addr寻求其它哨兵节点对主节点的判断,如果其他的哨兵也认为主节点主观线下了,则当认为主观下线的票数超过了quorum(选举)个数,此时哨兵节点则认为该主节点确实有问题,这样就客观下线了,大部分哨兵节点都同意下线操作,也就说是客观下线:

哨兵至少需要3个实例,来保证自己的健壮性。哨兵+redis主从的部署架构,是不会保证数据零丢失的,只能保证redis集群的高可用性. 对于哨兵+redis主从这种复杂的部署架构,尽量在测试环境和生产环境,都进行充分的测试和演练。

自动故障转移机制

在从节点(slave node) 中选择新的主节点(master node)

sentinel状态数据结构中保存了主服务的所有从服务信息,领头sentinel按照如下的规则从从服务列表中挑选出新的主服务

  1. 过滤掉主观下线的节点

  2. 选择slave-priority最高的节点,如果由则返回没有就继续选择

  3. 选择出复制偏移量最大的系节点,因为复制便宜量越大则数据复制的越完整,如果由就返回了,没有就继续

  4. 选择run_id最小的节点

更新主从状态

通过slaveof no one命令,让选出来的从节点成为主节点;并通过slaveof命令让其他节点成为其从节点。

将已下线的主节点设置成新的主节点的从节点,当其回复正常时,复制新的主节点,变成新的主节点的从节点.

redis哨兵主备切换的数据丢失问题

两种丢失情况:

异步复制

因为master->slave的复制是异步的,所以可能有部分数据还没复制到slave,master就宕机了,这些数据就丢失了。

脑裂

脑裂,也就是说,某个master所在机器突然脱离了正常的网络,跟其他slave机器不能连接,但是实际上master还运行着, 这个时候,集群中就会出现两个master。

此时虽然某个slave被切换成了master,但是可能client还没来得及切换到新的master,还继续写向旧master数据可能就会丢失。因此master在恢复的时候,会被作为一个slave挂到新的master上,自己的数据会被清空,从新的master复制数据,

解决异步复制和脑裂导致的数据丢失

设置数据复制和同步的延迟时间:

min-slaves-to-write 1
min-slaves-max-lag 10

要求至少有1个slave,数据复制和同步的延迟不能超过10秒
如果说一旦所有slave,数据复制和同步的延迟都超过了10秒钟,那么这个时候,master就不会再接收任何请求了。

(1)减少异步复制的数据丢失
有了min-slaves-max-lag这个配置,就可以确保说,一旦slave复制数据和ack延时太长,就认为可能master宕机后损失的数据太多了,那么就拒绝写请求,这样可以把master宕机时由于部分数据未同步到slave导致的数据丢失降低的可控范围内
(2)减少脑裂的数据丢失
如果一个master出现了脑裂,跟其他slave丢了连接,那么上面两个配置可以确保说,如果不能继续给指定数量的slave发送数据,而且slave超过10秒没有给自己ack消息,那么就直接拒绝客户端的写请求.

这样脑裂后的旧master就不会接受client的新数据,也就避免了数据丢失.
上面的配置就确保了,如果跟任何一个slave丢了连接,在10秒后发现没有slave给自己ack,那么就拒绝新的写请求.因此在脑裂场景下,最多就丢失10秒的数据

总结

哨兵架构,几乎可以做到了我们的要实现的高可用,但是哨兵的选举还是需要时间的,而且中间会阻塞客户端的请求,假如我们的选举消耗了1秒(实际可能几秒,高则几十秒),就在这1秒的时候来了客户端的请求,那个请求也是不可用的,并且我们的读写的节点实际还是单节点的,怎么办? 使用 Redis集群架构:

也就是我们Redis的集群其实就是一个个小的主从结合在一起(官方建议小于1000个小主从),变成了我们的Redis集群,每个小主从也就是我们的Redis数据分片。


Kotlin 开发者社区

国内第一Kotlin 开发者社区公众号,主要分享、交流 Kotlin 编程语言、Spring Boot、Android、React.js/Node.js、函数式编程、编程思想等相关主题。

越是喧嚣的世界,越需要宁静的思考。


推荐阅读
  • 作为140字符的开创者,Twitter看似简单却异常复杂。其简洁之处在于仅用140个字符就能实现信息的高效传播,甚至在多次全球性事件中超越传统媒体的速度。然而,为了支持2亿用户的高效使用,其背后的技术架构和系统设计则极为复杂,涉及高并发处理、数据存储和实时传输等多个技术挑战。 ... [详细]
  • Go语言实现Redis客户端与服务器的交互机制深入解析
    在前文对Godis v1.0版本的基础功能进行了详细介绍后,本文将重点探讨如何实现客户端与服务器之间的交互机制。通过具体代码实现,使客户端与服务器能够顺利通信,赋予项目实际运行的能力。本文将详细解析Go语言在实现这一过程中的关键技术和实现细节,帮助读者深入了解Redis客户端与服务器的交互原理。 ... [详细]
  • 本文深入探讨了Spring Cloud Eureka在企业级应用中的高级使用场景及优化策略。首先,介绍了Eureka的安全配置,确保服务注册与发现过程的安全性。接着,分析了Eureka的健康检查机制,提高系统的稳定性和可靠性。随后,详细讨论了Eureka的各项参数调优技巧,以提升性能和响应速度。最后,阐述了如何实现Eureka的高可用性部署,保障服务的连续性和可用性。通过这些内容,开发者可以更好地理解和运用Eureka,提升微服务架构的整体效能。 ... [详细]
  • ZeroMQ在云计算环境下的高效消息传递库第四章学习心得
    本章节深入探讨了ZeroMQ在云计算环境中的高效消息传递机制,涵盖客户端请求-响应模式、最近最少使用(LRU)队列、心跳检测、面向服务的队列、基于磁盘的离线队列以及主从备份服务等关键技术。此外,还介绍了无中间件的请求-响应架构,强调了这些技术在提升系统性能和可靠性方面的应用价值。个人理解方面,ZeroMQ通过这些机制有效解决了分布式系统中常见的通信延迟和数据一致性问题。 ... [详细]
  • 结语 | 《探索二进制世界:软件安全与逆向分析》读书笔记:深入理解二进制代码的逆向工程方法
    结语 | 《探索二进制世界:软件安全与逆向分析》读书笔记:深入理解二进制代码的逆向工程方法 ... [详细]
  • 智能制造数据综合分析与应用解决方案
    在智能制造领域,生产数据通过先进的采集设备收集,并利用时序数据库或关系型数据库进行高效存储。这些数据经过处理后,通过可视化数据大屏呈现,为生产车间、生产控制中心以及管理层提供实时、精准的信息支持,助力不同应用场景下的决策优化和效率提升。 ... [详细]
  • Spring框架入门指南:专为新手打造的详细学习笔记
    Spring框架是Java Web开发中广泛应用的轻量级应用框架,以其卓越的功能和出色的性能赢得了广大开发者的青睐。本文为初学者提供了详尽的学习指南,涵盖基础概念、核心组件及实际应用案例,帮助新手快速掌握Spring框架的核心技术与实践技巧。 ... [详细]
  • 从用户转型为开发者:一场思维升级的旅程 | 专访 StarRocks Committer 周威
    从用户转变为开发者,不仅是一次角色的转换,更是一场深刻的思维升级之旅。本次专访中,StarRocks Committer 周威分享了他如何在这一过程中逐步提升技术能力与思维方式,为开源社区贡献自己的力量。 ... [详细]
  • 全面解析:Hadoop技术栈中的Linux操作系统概览
    全面解析:Hadoop技术栈中的Linux操作系统概览 ... [详细]
  • 如何在Java中高效构建WebService
    本文介绍了如何利用XFire框架在Java中高效构建WebService。XFire是一个轻量级、高性能的Java SOAP框架,能够简化WebService的开发流程。通过结合MyEclipse集成开发环境,开发者可以更便捷地进行项目配置和代码编写,从而提高开发效率。此外,文章还详细探讨了XFire的关键特性和最佳实践,为读者提供了实用的参考。 ... [详细]
  • 深入解析 C 语言与 C++ 之间的差异及关联
    深入解析 C 语言与 C++ 之间的差异及关联 ... [详细]
  • 本文深入探讨了IO复用技术的原理与实现,重点分析了其在解决C10K问题中的关键作用。IO复用技术允许单个进程同时管理多个IO对象,如文件、套接字和管道等,通过系统调用如`select`、`poll`和`epoll`,高效地处理大量并发连接。文章详细介绍了这些技术的工作机制,并结合实际案例,展示了它们在高并发场景下的应用效果。 ... [详细]
  • 优化Oracle数据库日志功能的关闭方法与实践
    在优化Oracle数据库日志功能的过程中,关闭不必要的日志记录是一项重要任务。本文探讨了Oracle 11g中日志路径的配置和管理,特别是针对常用的警报日志(alert log)。通过合理配置 `alert_$ORACLE_SID.log` 文件,可以有效减少日志文件的大小和提高系统性能。此外,文章还介绍了如何通过调整参数和使用脚本自动化日志管理,进一步提升数据库的稳定性和维护效率。 ... [详细]
  • 在启用分层编译的情况下,即时编译器(JIT)的触发条件涉及多个因素,包括方法调用频率、代码复杂度和运行时性能数据。本文将详细解析这些条件,并探讨分层编译如何优化JVM的执行效率。 ... [详细]
  • Windows环境下详细教程:如何搭建Git服务
    Windows环境下详细教程:如何搭建Git服务 ... [详细]
author-avatar
晨光微露36
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有