热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

基于python的BP神经网络及异或实现过程解析

这篇文章主要介绍了基于python的BP神经网络及异或实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

BP神经网络是最简单的神经网络模型了,三层能够模拟非线性函数效果。

难点:

  • 如何确定初始化参数?
  • 如何确定隐含层节点数量?
  • 迭代多少次?如何更快收敛?
  • 如何获得全局最优解?
'''
neural networks 

created on 2019.9.24
author: vince
'''
import math
import logging
import numpy 
import random
import matplotlib.pyplot as plt

'''
neural network 
'''
class NeuralNetwork:

 def __init__(self, layer_nums, iter_num = 10000, batch_size = 1):
  self.__ILI = 0;
  self.__HLI = 1;
  self.__OLI = 2;
  self.__TLN = 3;

  if len(layer_nums) != self.__TLN:
   raise Exception("layer_nums length must be 3");

  self.__layer_nums = layer_nums; #array [layer0_num, layer1_num ...layerN_num]
  self.__iter_num = iter_num;
  self.__batch_size = batch_size;
 
 def train(self, X, Y):
  X = numpy.array(X);
  Y = numpy.array(Y);

  self.L = [];
  #initialize parameters
  self.__weight = [];
  self.__bias = [];
  self.__step_len = [];
  for layer_index in range(1, self.__TLN):
   self.__weight.append(numpy.random.rand(self.__layer_nums[layer_index - 1], self.__layer_nums[layer_index]) * 2 - 1.0);
   self.__bias.append(numpy.random.rand(self.__layer_nums[layer_index]) * 2 - 1.0);
   self.__step_len.append(0.3);

  logging.info("bias:%s" % (self.__bias));
  logging.info("weight:%s" % (self.__weight));

  for iter_index in range(self.__iter_num):
   sample_index = random.randint(0, len(X) - 1);
   logging.debug("-----round:%s, select sample %s-----" % (iter_index, sample_index));
   output = self.forward_pass(X[sample_index]);
   g = (-output[2] + Y[sample_index]) * self.activation_drive(output[2]);
   logging.debug("g:%s" % (g));
   for j in range(len(output[1])):
    self.__weight[1][j] += self.__step_len[1] * g * output[1][j];
   self.__bias[1] -= self.__step_len[1] * g;

   e = [];
   for i in range(self.__layer_nums[self.__HLI]):
    e.append(numpy.dot(g, self.__weight[1][i]) * self.activation_drive(output[1][i]));
   e = numpy.array(e);
   logging.debug("e:%s" % (e));
   for j in range(len(output[0])):
    self.__weight[0][j] += self.__step_len[0] * e * output[0][j];
   self.__bias[0] -= self.__step_len[0] * e;

   l = 0;
   for i in range(len(X)):
    predictiOns= self.forward_pass(X[i])[2];
    l += 0.5 * numpy.sum((predictions - Y[i]) ** 2);
   l /= len(X);
   self.L.append(l);

   logging.debug("bias:%s" % (self.__bias));
   logging.debug("weight:%s" % (self.__weight));
   logging.debug("loss:%s" % (l));
  logging.info("bias:%s" % (self.__bias));
  logging.info("weight:%s" % (self.__weight));
  logging.info("L:%s" % (self.L));
 
 def activation(self, z):
  return (1.0 / (1.0 + numpy.exp(-z)));

 def activation_drive(self, y):
  return y * (1.0 - y);

 def forward_pass(self, x):
  data = numpy.copy(x);
  result = [];
  result.append(data);
  for layer_index in range(self.__TLN - 1):
   data = self.activation(numpy.dot(data, self.__weight[layer_index]) - self.__bias[layer_index]);
   result.append(data);
  return numpy.array(result);

 def predict(self, x):
  return self.forward_pass(x)[self.__OLI];


def main():
 logging.basicConfig(level = logging.INFO,
   format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
   datefmt = '%a, %d %b %Y %H:%M:%S');
   
 logging.info("trainning begin.");
 nn = NeuralNetwork([2, 2, 1]);
 X = numpy.array([[0, 0], [1, 0], [1, 1], [0, 1]]);
 Y = numpy.array([0, 1, 0, 1]);
 nn.train(X, Y);

 logging.info("trainning end. predict begin.");
 for x in X:
  print(x, nn.predict(x));

 plt.plot(nn.L)
 plt.show();

if __name__ == "__main__":
 main();

具体收敛效果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 机器学习核心概念与技术
    本文系统梳理了机器学习的关键知识点,涵盖模型评估、正则化、线性模型、支持向量机、决策树及集成学习等内容,并深入探讨了各算法的原理和应用场景。 ... [详细]
  • 本文介绍了如何利用TensorFlow框架构建一个简单的非线性回归模型。通过生成200个随机数据点进行训练,模型能够学习并预测这些数据点的非线性关系。 ... [详细]
  • 深入浅出TensorFlow数据读写机制
    本文详细介绍TensorFlow中的数据读写操作,包括TFRecord文件的创建与读取,以及数据集(dataset)的相关概念和使用方法。 ... [详细]
  • 山东高校教师职称改革:12位教师因绩效不佳被降级
    近期,《学知报》发表了一篇关于威海职业学院教育改革进展的文章。文章指出,尽管一些改革措施仍在试验阶段,但该学院决心通过深化改革提升教学质量。 ... [详细]
  • TWEN-ASR 语音识别入门:运行首个程序
    本文详细介绍了如何使用TWEN-ASR ONE开发板运行第一个语音识别程序,包括开发环境搭建、代码编写、下载和调试等步骤。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 本文档旨在帮助开发者回顾游戏开发中的人工智能技术,涵盖移动算法、群聚行为、路径规划、脚本AI、有限状态机、模糊逻辑、规则式AI、概率论与贝叶斯技术、神经网络及遗传算法等内容。 ... [详细]
  • 本文深入探讨了《Crossing the Line: Crowd Counting by Integer Programming with Local Features》论文的核心技术与应用,包括ROI(感兴趣区域)和LOI(感兴趣线)的概念,以及HOG特征的详细解析。 ... [详细]
  • 本文探讨了亚马逊Go如何通过技术创新推动零售业的发展,以及面临的市场和隐私挑战。同时,介绍了亚马逊最新的‘刷手支付’技术及其潜在影响。 ... [详细]
  • 基于2-channelnetwork的图片相似度判别一、相关理论本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《LearningtoCompar ... [详细]
  • 在上一篇文章中,我们初步探讨了神经网络的基础概念,并通过一个简单的例子——将摄氏度转换为华氏度——介绍了单个神经元的工作原理。本文将继续探索神经网络的应用,特别是如何构建一个基本的分类器。 ... [详细]
  • 利用Java与Tesseract-OCR实现数字识别
    本文深入探讨了如何利用Java语言结合Tesseract-OCR技术来实现图像中的数字识别功能,旨在为开发者提供详细的指导和实践案例。 ... [详细]
author-avatar
右心1477
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有