热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于python的情感分析案例_关于python爬虫的情感分析

基于python的情感分析案例_关于python爬虫的情感分析今天给大家分享的是通过情感词典来对文本进行情感分析最后计算出情感得分通过情感得分来判断正负调性主要步骤:数据准备本次情

今天给大家分享的是通过情感词典来对文本进行情感分析最后计算出情感得分 通过情感得分来判断正负调性

    主要步骤:

          

图片

数据准备
        

本次情感词典采用的是BosonNLP的情感词典,来源于社交媒体文本,所以词典适用于处理社交媒体的情感分析

     本次分析准备的文本数据有:

            BosonNLP情感词典

            停用词表

            否定词表

            程度副词表

基于python的情感分析案例_关于python爬虫的情感分析

生成停用词词典

         

在生成停用词词典的时候要注意过滤否定词和程度副词

    代码如下:

基于python的情感分析案例_关于python爬虫的情感分析

数据预处理
        

在数据预处理部分主要做的是对文本进行jieba分词和去停用词

     代码如下:

基于python的情感分析案例_关于python爬虫的情感分析

分数计算前期准备

对文本进行分词以后,得到文本中的情感词、否定词和程度副词

    读取情感词典文件、否定词文件、程度副词文件

    然后将分词后的情感词、否定词和程度副词通过情感词典文件、否定词文件、程度副词文件分别放入三个字典,为下面计算情感分数做铺垫:

基于python的情感分析案例_关于python爬虫的情感分析

基于python的情感分析案例_关于python爬虫的情感分析 

计算情感的分数

通过上一步得到了文本的分词结果,同时得到了文本的情感词、否定词和程度副词三个列表

    遍历所有的情感词,看查看当前情感词的前面是否有否定词和程度副词。

    如果没有否定词,就对当前情感词乘以1,如果有否定词或者有多个否定词,可以乘以(-1)^否定词的个数;如果有程度副词,就在当前情感词前面乘以程度副词的程度等级。

基于python的情感分析案例_关于python爬虫的情感分析

测试

   通过输入文本来测试一下由分词词典得到的情感分数:(最后得到的文本情感分数有正负之分  分数越高越趋近于正面 分数越低越趋近于负面)


基于python的情感分析案例_关于python爬虫的情感分析

测试用例1: 今天吃了顿砂锅米线 味道特别好 下次还去

图片

    测试用例2:今天外面下雨了 心情也顺带有点沮丧 提不起精神

图片

    测试用例3:年年岁岁花相似 岁岁年年人不同

图片

    测试用例4:在淘宝买了个商品 可是快递员把我的快递随意乱扔 里面的东西都被摔碎了 真的好生气

图片

    通过分数可以看到,还是分析的有点准的,但是相较于机器学习来做情感分析还是差距很大,后面有时间会陆续学习更新一些更深入的情感分析算法。希望大家多多支持~

如需源码请关注公众号【PyDream】后回复:【情感分析即可】
本文链接:https://mp.weixin.qq.com/s/ybboepfKDPxm65HXY8ZEaw

微信公众号二维码:

基于python的情感分析案例_关于python爬虫的情感分析

 


推荐阅读
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 为了评估精心优化的模型与策略在实际环境中的表现,Google对其实验框架进行了全面升级,旨在实现更高效、更精准和更快速的在线测试。新的框架支持更多的实验场景,提供更好的数据洞察,并显著缩短了实验周期,从而加速产品迭代和优化过程。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 深入浅出解读奇异值分解,助你轻松掌握核心概念 ... [详细]
  • 在当前各种算法实现和开源软件包层出不穷的背景下,算法对程序员的重要性是否有所减弱?回顾历史,早期程序员必须熟练掌握算法并频繁自行编写。然而,随着技术的发展,算法逐渐成为一种“商品”,现代开发者更多依赖现成的库和商业算法解决方案。有观点认为,机器学习领域中,许多算法已经被高度封装,不再需要深入理解其背后的数学原理。然而,这种趋势也引发了关于技术深度与广度平衡的讨论,强调了基础理论知识在应对复杂问题时的不可替代性。 ... [详细]
  • 本文主要参考《Python机器学习经典实例》  在介绍凝聚层次聚类之前,我们需要先理解层次聚类(hierarchicalclustering)。层次聚类是一组聚类算法,通过不断地分 ... [详细]
  • 本文通过思维导图的形式,深入解析了大型网站技术架构的核心原理与实际案例。首先,探讨了大型网站架构的演化过程,从单体应用到分布式系统的转变,以及各阶段的关键技术和挑战。接着,详细分析了常见的大型网站架构模式,包括负载均衡、缓存机制、数据库设计等,并结合具体案例进行说明。这些内容不仅有助于理解大型网站的技术实现,还能为实际项目提供宝贵的参考。 ... [详细]
  • 2021年Java开发实战:当前时间戳转换方法详解与实用网址推荐
    在当前的就业市场中,金九银十过后,金三银四也即将到来。本文将分享一些实用的面试技巧和题目,特别是针对正在寻找新工作机会的Java开发者。作者在准备字节跳动的面试过程中积累了丰富的经验,并成功获得了Offer。文中详细介绍了如何将当前时间戳进行转换的方法,并推荐了一些实用的在线资源,帮助读者更好地应对技术面试。 ... [详细]
  • C++ 开发实战:实用技巧与经验分享
    C++ 开发实战:实用技巧与经验分享 ... [详细]
  • 提升 Kubernetes 集群管理效率的七大专业工具
    Kubernetes 在云原生环境中的应用日益广泛,然而集群管理的复杂性也随之增加。为了提高管理效率,本文推荐了七款专业工具,这些工具不仅能够简化日常操作,还能提升系统的稳定性和安全性。从自动化部署到监控和故障排查,这些工具覆盖了集群管理的各个方面,帮助管理员更好地应对挑战。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • Hired网站最新发布的开发者调查显示,Python 语言继续受到开发者的广泛欢迎,而 PHP 则被评为最不受欢迎的语言。该报告基于 Hired 数据科学团队对 13 个城市中 9800 名开发者的调查数据,深入分析了当前编程语言的使用趋势和开发者偏好。此外,报告还探讨了其他热门语言如 JavaScript 和 Java 的表现,并提供了对技术招聘市场的洞见。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 本文深入探讨了算法进阶中的多个核心主题,包括最大似然估计在统计建模中的应用、赔率计算在风险评估中的重要性、FuzzyWuzzy库在字符串相似度匹配中的高效使用、主成分分析(PCA)在数据降维与特征提取中的关键作用,以及One-Hot编码在处理分类变量时的技术细节。通过这些内容,读者将获得对算法应用的全面理解。 ... [详细]
author-avatar
勿缘无悔
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有