热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于c语言的排序算法研究下载,c++排序算法库

本文目录一览:1、基于C语言的几种排序算法的分析

本文目录一览:


  • 1、基于C语言的几种排序算法的分析


  • 2、c语言中排序方法


  • 3、数据结构C语言——实现各种排序算法

基于C语言的几种排序算法的分析

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):

1、稳定排序和非稳定排序

简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就

说这种排序方法是稳定的。反之,就是非稳定的。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,

则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,

a2,a3,a5就不是稳定的了。

2、内排序和外排序

在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;

在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

================================================================================

*/

/*

================================================

功能:选择排序

输入:数组名称(也就是数组首地址)、数组中元素个数

================================================

*/

/*

====================================================

算法思想简单描述:

在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环

到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。算法复杂度O(n2)--[n的平方]

=====================================================

*/

void select_sort(int *x, int n)

{

int i, j, min, t;

for (i=0; in-1; i++) /*要选择的次数:0~n-2共n-1次*/

{

min = i; /*假设当前下标为i的数最小,比较后再调整*/

for (j=i+1; jn; j++)/*循环找出最小的数的下标是哪个*/

{

if (*(x+j) *(x+min))

{

min = j; /*如果后面的数比前面的小,则记下它的下标*/

}

}

if (min != i) /*如果min在循环中改变了,就需要交换数据*/

{

t = *(x+i);

*(x+i) = *(x+min);

*(x+min) = t;

}

}

}

/*

================================================

功能:直接插入排序

输入:数组名称(也就是数组首地址)、数组中元素个数

================================================

*/

/*

====================================================

算法思想简单描述:

在要排序的一组数中,假设前面(n-1) [n=2] 个数已经是排

好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数

也是排好顺序的。如此反复循环,直到全部排好顺序。

直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]

=====================================================

*/

void insert_sort(int *x, int n)

{

int i, j, t;

for (i=1; in; i++) /*要选择的次数:1~n-1共n-1次*/

{

/*

暂存下标为i的数。注意:下标从1开始,原因就是开始时

第一个数即下标为0的数,前面没有任何数,单单一个,认为

它是排好顺序的。

*/

t=*(x+i);

for (j=i-1; j=0 t*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/

{

*(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/

}

*(x+j+1) = t; /*找到下标为i的数的放置位置*/

}

}

/*

================================================

功能:冒泡排序

输入:数组名称(也就是数组首地址)、数组中元素个数

================================================

*/

/*

====================================================

算法思想简单描述:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上

而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较

小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要

求相反时,就将它们互换。

下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的

位置k,这样可以减少外层循环扫描的次数。

冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]

=====================================================

*/

void bubble_sort(int *x, int n)

{

int j, k, h, t;

for (h=n-1; h0; h=k) /*循环到没有比较范围*/

{

for (j=0, k=0; jh; j++) /*每次预置k=0,循环扫描后更新k*/

{

if (*(x+j) *(x+j+1)) /*大的放在后面,小的放到前面*/

{

t = *(x+j);

*(x+j) = *(x+j+1);

*(x+j+1) = t; /*完成交换*/

k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/

}

}

}

}

/*

================================================

功能:希尔排序

输入:数组名称(也就是数组首地址)、数组中元素个数

================================================

*/

/*

====================================================

算法思想简单描述:

在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,

并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为

增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除

多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现

了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中

记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量

对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成

一组,排序完成。

下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,

以后每次减半,直到增量为1。

希尔排序是不稳定的。

=====================================================

*/

void shell_sort(int *x, int n)

{

int h, j, k, t;

for (h=n/2; h0; h=h/2) /*控制增量*/

{

for (j=h; jn; j++) /*这个实际上就是上面的直接插入排序*/

{

t = *(x+j);

for (k=j-h; (k=0 t*(x+k)); k-=h)

{

*(x+k+h) = *(x+k);

}

*(x+k+h) = t;

}

}

}

/*

================================================

功能:快速排序

输入:数组名称(也就是数组首地址)、数组中起止元素的下标

================================================

*/

/*

====================================================

算法思想简单描述:

快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟

扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次

扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只

减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)

的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理

它左右两边的数,直到基准点的左右只有一个元素为止。它是由

C.A.R.Hoare于1962年提出的。

显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的

函数是用递归实现的,有兴趣的朋友可以改成非递归的。

快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)

=====================================================

*/

void quick_sort(int *x, int low, int high)

{

int i, j, t;

if (low high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/

{

i = low;

j = high;

t = *(x+low); /*暂存基准点的数*/

while (ij) /*循环扫描*/

{

while (ij *(x+j)t) /*在右边的只要比基准点大仍放在右边*/

{

j--; /*前移一个位置*/

}

if (ij)

{

*(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/

i++; /*后移一个位置,并以此为基准点*/

}

while (ij *(x+i)=t) /*在左边的只要小于等于基准点仍放在左边*/

{

i++; /*后移一个位置*/

}

if (ij)

{

*(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/

j--; /*前移一个位置*/

}

}

*(x+i) = t; /*一遍扫描完后,放到适当位置*/

quick_sort(x,low,i-1); /*对基准点左边的数再执行快速排序*/

quick_sort(x,i+1,high); /*对基准点右边的数再执行快速排序*/

}

}

/*

================================================

功能:堆排序

输入:数组名称(也就是数组首地址)、数组中元素个数

================================================

*/

/*

====================================================

算法思想简单描述:

堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当

满足(hi=h2i,hi=2i+1)或(hi=h2i,hi=2i+1)(i=1,2,...,n/2)

时称之为堆。在这里只讨论满足前者条件的堆。

由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以

很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,

使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点

交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点

的堆,并对它们作交换,最后得到有n个节点的有序序列。

从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素

交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数

实现排序的函数。

堆排序是不稳定的。算法时间复杂度O(nlog2n)。

*/

/*

功能:渗透建堆

输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始

*/

void sift(int *x, int n, int s)

{

int t, k, j;

t = *(x+s); /*暂存开始元素*/

k = s; /*开始元素下标*/

j = 2*k + 1; /*右子树元素下标*/

while (jn)

{

if (jn-1 *(x+j) *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/

{

j++;

}

if (t*(x+j)) /*调整*/

{

*(x+k) = *(x+j);

k = j; /*调整后,开始元素也随之调整*/

j = 2*k + 1;

}

else /*没有需要调整了,已经是个堆了,退出循环。*/

{

break;

}

}

*(x+k) = t; /*开始元素放到它正确位置*/

}

/*

功能:堆排序

输入:数组名称(也就是数组首地址)、数组中元素个数

*/

void heap_sort(int *x, int n)

{

int i, k, t;

int *p;

for (i=n/2-1; i=0; i--)

{

sift(x,n,i); /*初始建堆*/

}

for (k=n-1; k=1; k--)

{

t = *(x+0); /*堆顶放到最后*/

*(x+0) = *(x+k);

*(x+k) = t;

sift(x,k,0); /*剩下的数再建堆*/

}

}

void main()

{

#define MAX 4

int *p, i, a[MAX];

/*录入测试数据*/

p = a;

printf("Input %d number for sorting :\n",MAX);

for (i=0; iMAX; i++)

{

scanf("%d",p++);

}

printf("\n");

/*测试选择排序*/

p = a;

select_sort(p,MAX);

/**/

/*测试直接插入排序*/

/*

p = a;

insert_sort(p,MAX);

*/

/*测试冒泡排序*/

/*

p = a;

insert_sort(p,MAX);

*/

/*测试快速排序*/

/*

p = a;

quick_sort(p,0,MAX-1);

*/

/*测试堆排序*/

/*

p = a;

heap_sort(p,MAX);

*/

for (p=a, i=0; iMAX; i++)

{

printf("%d ",*p++);

}

printf("\n");

system("pause");

}

c语言中排序方法

1、冒泡排序(最常用)

冒泡排序是最简单的排序方法:原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。(注意每一轮都是从a[0]开始比较的)

以从小到大排序为例,第一轮比较后,所有数中最大的那个数就会浮到最右边;第二轮比较后,所有数中第二大的那个数就会浮到倒数第二个位置……就这样一轮一轮地比较,最后实现从小到大排序。

2、鸡尾酒排序

鸡尾酒排序又称双向冒泡排序、鸡尾酒搅拌排序、搅拌排序、涟漪排序、来回排序或快乐小时排序, 是冒泡排序的一种变形。该算法与冒泡排序的不同处在于排序时是以双向在序列中进行排序。

原理:数组中的数字本是无规律的排放,先找到最小的数字,把他放到第一位,然后找到最大的数字放到最后一位。然后再找到第二小的数字放到第二位,再找到第二大的数字放到倒数第二位。以此类推,直到完成排序。

3、选择排序

思路是设有10个元素a[1]-a[10],将a[1]与a[2]-a[10]比较,若a[1]比a[2]-a[10]都小,则不进行交换。若a[2]-a[10]中有一个以上比a[1]小,则将其中最大的一个与a[1]交换,此时a[1]就存放了10个数中最小的一个。同理,第二轮拿a[2]与a[3]-a[10]比较,a[2]存放a[2]-a[10]中最小的数,以此类推。

4、插入排序

插入排序是在一个已经有序的小序列的基础上,一次插入一个元素*

一般来说,插入排序都采用in-place在数组上实现。

具体算法描述如下:

⒈ 从第一个元素开始,该元素可以认为已经被排序

⒉ 取出下一个元素,在已经排序的元素序列中从后向前扫描

⒊ 如果该元素(已排序)大于新元素,将该元素移到下一位置

⒋ 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

⒌ 将新元素插入到下一位置中

⒍ 重复步骤2~5

数据结构C语言——实现各种排序算法

刚做完的

#include iostream

using namespace std;

void BiInsertsort(int r[], int n) //插入排序(折半)

{

for(int i=2;i=n;i++)

{

if (r[i]r[i-1])

{

r[0] = r[i]; //设置哨兵

int low=1,high=i-1; //折半查找

while (low=high)

{

int mid=(low+high)/2;

if (r[0]r[mid]) high=mid-1;

else low = mid+1;

}

int j;

for (j=i-1;jhigh;j--) r[j+1] = r[j]; //后移

r[j+1] = r[0];

}

}

for(int k=1;k=n;k++) coutr[k]" ";

cout"\n";

}

void ShellSort ( int r[], int n) //希尔排序

{

for(int d=n/2;d=1;d=d/2) //以d为增量进行直接插入排序

{

for (int i=d+1;i=n;i++)

{

r[0] = r[i]; //暂存被插入记录

int j;

for( j=i-d; j0 r[0]r[j]; j=j-d) r[j+d] = r[j]; //记录后移d个位置

r[j+d] = r[0];

}

}

for(int i=1;i=n;i++) coutr[i]" ";

cout"\n";

}

void BubbleSort(int r[], int n) //起泡排序

{

int temp,exchange,bound;

exchange=n; //第一趟起泡排序的范围是r[0]到r[n-1]

while (exchange) //仅当上一趟排序有记录交换才进行本趟排序

{

bound=exchange;

exchange=0;

for (int j=1; jbound; j++) //一趟起泡排序

if (r[j]r[j+1])

{

temp=r[j];

r[j]=r[j+1];

r[j+1]=temp;

exchange=j; //记录每一次发生记录交换的位置

}

}

for(int i=1;i=n;i++) coutr[i]" ";

cout"\n";

}

int Partition(int r[], int first, int end) //快速排序一次划分

{

int i=first; //初始化

int j=end;

r[0]=r[first];

while (ij)

{

while (ij r[0]= r[j]) j--; //右侧扫描

r[i]=r[j];

while (ij r[i]= r[0]) i++; //左侧扫描

r[j]=r[i];

}

r[i]=r[0];

return i; //i为轴值记录的最终位置

}

void QuickSort(int r[], int first, int end) //快速排序

{

if (firstend)

{ //递归结束

int pivot=Partition(r, first, end); //一次划分

QuickSort(r, first, pivot-1);//递归地对左侧子序列进行快速排序

QuickSort(r, pivot+1, end); //递归地对右侧子序列进行快速排序

}

}

void SelectSort(int r[ ], int n) //简单选择排序

{

int i,j,index,temp;

for (i=1; in; i++) //对n个记录进行n-1趟简单选择排序

{

index=i;

for (j=i+1; j=n; j++) //在无序区中选取最小记录

if (r[j]r[index]) index=j;

if (index!=i)

{

temp=r[i];

r[i]=r[index];

r[index]=temp;

}

}

for(i=1;i=n;i++) coutr[i]" ";

cout"\n";

}

void main()

{

const int numv=12;

int a[3][numv]={{0,6,13,19,23,37,39,41,45,48,58,86},{0,86,58,48,45,41,39,37,23,19,13,6},{0,23,13,48,86,19,6,41,58,37,45,39}};

int z1[numv],z2[numv];

int m,n;

cout"请选择测试数据类型:⑴正序 ⑵逆序 ⑶随机 [ 若跳出,请按⑷ ]" endl;

cinm;

while(m0m4)

{

cout"请选择排序算法:⑴直接插入排序 ⑵希尔排序 ⑶冒泡排序 ⑷快速排序 \n ⑸简单选择排序"endl;

cinn;

switch(n)

{

case 1:

cout "直接插入排序前:" "\n";

for(int j=1;jnumv;j++) couta[m-1][j]" ";

cout "\n直接插入排序结果为:" "\n";

BiInsertsort(a[m-1],numv-1);

break;

case 2:

cout "\n希尔排序前:" "\n";

for(int j=1;jnumv;j++) couta[m-1][j]" ";

cout "\n希尔排序结果为:" "\n";

ShellSort(a[m-1], numv-1);

break;

case 3:

cout "\n冒泡排序前:" "\n";

for(int k=1;knumv;k++) couta[m-1][k]" ";

cout "\n冒泡排序结果为:" "\n";

BubbleSort(a[m-1], numv-1);

break;

case 4:

cout "\n快速排序前:" "\n";

for(int j=1;jnumv;j++) couta[m-1][j]" ";

cout "\n快速排序结果为:" "\n";

QuickSort(a[m-1],0,numv-1);

for(int i=1;inumv;i++)

couta[m-1][i]" ";

cout"\n";

break;

case 5:

cout "\n简单选择排序前:" "\n";

for(int j=1;jnumv;j++) couta[m-1][j]" ";

cout "\n简单选择排序结果为:" "\n";

SelectSort(a[m-1],numv-1);

break;

default:

cout"输入错误!"endl;

}

m=0;

cout"请选择测试数据类型:⑴正序 ⑵逆序 ⑶随机 [ 若跳出,请按⑷ ]" endl;

cinm;

}

if(m==4) cout"(*^__^*) 再见!"endl;

else cout"输入错误!"endl;

}


推荐阅读
  • 3.223.28周学习总结中的贪心作业收获及困惑
    本文是对3.223.28周学习总结中的贪心作业进行总结,作者在解题过程中参考了他人的代码,但前提是要先理解题目并有解题思路。作者分享了自己在贪心作业中的收获,同时提到了一道让他困惑的题目,即input details部分引发的疑惑。 ... [详细]
  • 本文介绍了九度OnlineJudge中的1002题目“Grading”的解决方法。该题目要求设计一个公平的评分过程,将每个考题分配给3个独立的专家,如果他们的评分不一致,则需要请一位裁判做出最终决定。文章详细描述了评分规则,并给出了解决该问题的程序。 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 本文介绍了UVALive6575题目Odd and Even Zeroes的解法,使用了数位dp和找规律的方法。阶乘的定义和性质被介绍,并给出了一些例子。其中,部分阶乘的尾零个数为奇数,部分为偶数。 ... [详细]
  • CF:3D City Model(小思维)问题解析和代码实现
    本文通过解析CF:3D City Model问题,介绍了问题的背景和要求,并给出了相应的代码实现。该问题涉及到在一个矩形的网格上建造城市的情景,每个网格单元可以作为建筑的基础,建筑由多个立方体叠加而成。文章详细讲解了问题的解决思路,并给出了相应的代码实现供读者参考。 ... [详细]
  • 本文介绍了一个题目的解法,通过二分答案来解决问题,但困难在于如何进行检查。文章提供了一种逃逸方式,通过移动最慢的宿管来锁门时跑到更居中的位置,从而使所有合格的寝室都居中。文章还提到可以分开判断两边的情况,并使用前缀和的方式来求出在任意时刻能够到达宿管即将锁门的寝室的人数。最后,文章提到可以改成O(n)的直接枚举来解决问题。 ... [详细]
  • HDU 2372 El Dorado(DP)的最长上升子序列长度求解方法
    本文介绍了解决HDU 2372 El Dorado问题的一种动态规划方法,通过循环k的方式求解最长上升子序列的长度。具体实现过程包括初始化dp数组、读取数列、计算最长上升子序列长度等步骤。 ... [详细]
  • 本文介绍了C++中省略号类型和参数个数不确定函数参数的使用方法,并提供了一个范例。通过宏定义的方式,可以方便地处理不定参数的情况。文章中给出了具体的代码实现,并对代码进行了解释和说明。这对于需要处理不定参数的情况的程序员来说,是一个很有用的参考资料。 ... [详细]
  • 本文讨论了使用差分约束系统求解House Man跳跃问题的思路与方法。给定一组不同高度,要求从最低点跳跃到最高点,每次跳跃的距离不超过D,并且不能改变给定的顺序。通过建立差分约束系统,将问题转化为图的建立和查询距离的问题。文章详细介绍了建立约束条件的方法,并使用SPFA算法判环并输出结果。同时还讨论了建边方向和跳跃顺序的关系。 ... [详细]
  • 本文介绍了一种划分和计数油田地块的方法。根据给定的条件,通过遍历和DFS算法,将符合条件的地块标记为不符合条件的地块,并进行计数。同时,还介绍了如何判断点是否在给定范围内的方法。 ... [详细]
  • 本文介绍了P1651题目的描述和要求,以及计算能搭建的塔的最大高度的方法。通过动态规划和状压技术,将问题转化为求解差值的问题,并定义了相应的状态。最终得出了计算最大高度的解法。 ... [详细]
  • 本文介绍了解决二叉树层序创建问题的方法。通过使用队列结构体和二叉树结构体,实现了入队和出队操作,并提供了判断队列是否为空的函数。详细介绍了解决该问题的步骤和流程。 ... [详细]
  • 动态规划算法的基本步骤及最长递增子序列问题详解
    本文详细介绍了动态规划算法的基本步骤,包括划分阶段、选择状态、决策和状态转移方程,并以最长递增子序列问题为例进行了详细解析。动态规划算法的有效性依赖于问题本身所具有的最优子结构性质和子问题重叠性质。通过将子问题的解保存在一个表中,在以后尽可能多地利用这些子问题的解,从而提高算法的效率。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • 本文介绍了南邮ctf-web的writeup,包括签到题和md5 collision。在CTF比赛和渗透测试中,可以通过查看源代码、代码注释、页面隐藏元素、超链接和HTTP响应头部来寻找flag或提示信息。利用PHP弱类型,可以发现md5('QNKCDZO')='0e830400451993494058024219903391'和md5('240610708')='0e462097431906509019562988736854'。 ... [详细]
author-avatar
周七2602930253
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有