热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

基于Flink构建全场景实时数仓

目录:一.实时计算初期二.实时数仓建设三.Lambda架构的实时数仓四.Kappa架构的实时数仓五.流批结合的实时数仓实时计算初期虽然实时计算在最近几年才火起来,但是在早期也有部分


目录:

一. 实时计算初期

二. 实时数仓建设

三. Lambda架构的实时数仓

四. Kappa架构的实时数仓

五. 流批结合的实时数仓



实时计算初期

虽然实时计算在最近几年才火起来,但是在早期也有部分公司有实时计算的需求,但是数据量比较少,所以在实时方面形成不了完整的体系,基本所有的开发都是具体问题具体分析,来一个需求做一个,基本不考虑它们之间的关系,开发形式如下:

早期实时计算

如上图所示,拿到数据源后,会经过数据清洗,扩维,通过Flink进行业务逻辑处理,最后直接进行业务输出。把这个环节拆开来看,数据源端会重复引用相同的数据源,后面进行清洗、过滤、扩维等操作,都要重复做一遍,唯一不同的是业务的代码逻辑是不一样的。

随着产品和业务人员对实时数据需求的不断增多,这种开发模式出现的问题越来越多:



  1. 数据指标越来越多,“烟囱式”的开发导致代码耦合问题严重。



  2. 需求越来越多,有的需要明细数据,有的需要 OLAP 分析。单一的开发模式难以应付多种需求。



  3. 每个需求都要申请资源,导致资源成本急速膨胀,资源不能集约有效利用。



  4. 缺少完善的监控系统,无法在对业务产生影响之前发现并修复问题。



大家看实时数仓的发展和出现的问题,和离线数仓非常类似,后期数据量大了之后产生了各种问题,离线数仓当时是怎么解决的?离线数仓通过分层架构使数据解耦,多个业务可以共用数据,实时数仓是否也可以用分层架构呢?当然是可以的,但是细节上和离线的分层还是有一些不同,稍后会讲到。


实时数仓建设

从方法论来讲,实时和离线是非常相似的,离线数仓早期的时候也是具体问题具体分析,当数据规模涨到一定量的时候才会考虑如何治理。分层是一种非常有效的数据治理方式,所以在实时数仓如何进行管理的问题上,首先考虑的也是分层的处理逻辑。

实时数仓的架构如下图:

实时数仓架构

从上图中我们具体分析下每层的作用:



  • 数据源:在数据源的层面,离线和实时在数据源是一致的,主要分为日志类和业务类,日志类又包括用户日志,埋点日志以及服务器日志等。



  • 实时明细层:在明细层,为了解决重复建设的问题,要进行统一构建,利用离线数仓的模式,建设统一的基础明细数据层,按照主题进行管理,明细层的目的是给下游提供直接可用的数据,因此要对基础层进行统一的加工,比如清洗、过滤、扩维等。



  • 汇总层:汇总层通过Flink的简洁算子直接可以算出结果,并且形成汇总指标池,所有的指标都统一在汇总层加工,所有人按照统一的规范管理建设,形成可复用的汇总结果。



我们可以看出,实时数仓和离线数仓的分层非常类似,比如 数据源层,明细层,汇总层,乃至应用层,他们命名的模式可能都是一样的。但仔细比较不难发现,两者有很多区别:



  • 与离线数仓相比,实时数仓的层次更少一些:



    • 从目前建设离线数仓的经验来看,数仓的数据明细层内容会非常丰富,处理明细数据外一般还会包含轻度汇总层的概念,另外离线数仓中应用层数据在数仓内部,但实时数仓中,app 应用层数据已经落入应用系统的存储介质中,可以把该层与数仓的表分离



    • 应用层少建设的好处:实时处理数据的时候,每建一个层次,数据必然会产生一定的延迟



    • 汇总层少建的好处:在汇总统计的时候,往往为了容忍一部分数据的延迟,可能会人为的制造一些延迟来保证数据的准确。举例,在统计跨天相关的订单事件中的数据时,可能会等到 00:00:05 或者 00:00:10 再统计,确保 00:00 前的数据已经全部接受到位了,再进行统计。所以,汇总层的层次太多的话,就会更大的加重人为造成的数据延迟。





  • 与离线数仓相比,实时数仓的数据源存储不同:



    • 在建设离线数仓的时候,基本整个离线数仓都是建立在 Hive 表之上。但是,在建设实时数仓的时候,同一份表,会使用不同的方式进行存储。比如常见的情况下,明细数据或者汇总数据都会存在 Kafka 里面,但是像城市、渠道等维度信息需要借助 Hbase,MySQL 或者其他 KV 存储等数据库来进行存储




Lambda架构的实时数仓

Lambda和Kappa架构的概念已在前文中解释,不了解的小伙伴可点击链接:一文读懂大数据实时计算

下图是基于 Flink 和 Kafka 的 Lambda 架构的具体实践,上层是实时计算,下层是离线计算,横向是按计算引擎来分,纵向是按实时数仓来区分:

Lambda架构的实时数仓

Lambda架构是比较经典的架构,以前实时的场景不是很多,以离线为主,当附加了实时场景后,由于离线和实时的时效性不同,导致技术生态是不一样的。Lambda架构相当于附加了一条实时生产链路,在应用层面进行一个整合,双路生产,各自独立。这在业务应用中也是顺理成章采用的一种方式。

双路生产会存在一些问题,比如加工逻辑double,开发运维也会double,资源同样会变成两个资源链路。因为存在以上问题,所以又演进了一个Kappa架构。


Kappa架构的实时数仓

Kappa架构相当于去掉了离线计算部分的Lambda架构,具体如下图所示:

Kappa架构的实时数仓

Kappa架构从架构设计来讲比较简单,生产统一,一套逻辑同时生产离线和实时。但是在实际应用场景有比较大的局限性,因为实时数据的同一份表,会使用不同的方式进行存储,这就导致关联时需要跨数据源,操作数据有很大局限性,所以在业内直接用Kappa架构生产落地的案例不多见,且场景比较单一。

关于 Kappa 架构,熟悉实时数仓生产的同学,可能会有一个疑问。因为我们经常会面临业务变更,所以很多业务逻辑是需要去迭代的。之前产出的一些数据,如果口径变更了,就需要重算,甚至重刷历史数据。对于实时数仓来说,怎么去解决数据重算问题?

Kappa 架构在这一块的思路是:首先要准备好一个能够存储历史数据的消息队列,比如 Kafka,并且这个消息队列是可以支持你从某个历史的节点重新开始消费的。接着需要新起一个任务,从原来比较早的一个时间节点去消费 Kafka 上的数据,然后当这个新的任务运行的进度已经能够和现在的正在跑的任务齐平的时候,你就可以把现在任务的下游切换到新的任务上面,旧的任务就可以停掉,并且原来产出的结果表也可以被删掉。


流批结合的实时数仓

随着实时 OLAP 技术的发展,目前开源的OLAP引擎在性能,易用等方面有了很大的提升,如Doris、Presto等,加上数据湖技术的迅速发展,使得流批结合的方式变得简单。

如下图是流批结合的实时数仓:

流批结合的实时数仓

数据从日志统一采集到消息队列,再到实时数仓,作为基础数据流的建设是统一的。之后对于日志类实时特征,实时大屏类应用走实时流计算。对于Binlog类业务分析走实时OLAP批处理。

我们看到流批结合的方式与上面几种架构的存储方式发生了变化,由Kafka换成了Iceberg,Iceberg是介于上层计算引擎和底层存储格式之间的一个中间层,我们可以把它定义成一种“数据组织格式”,底层存储还是HDFS,那么为什么加了中间层,就对流批结合处理的比较好了呢?Iceberg的ACID能力可以简化整个流水线的设计,降低整个流水线的延迟,并且所具有的修改、删除能力能够有效地降低开销,提升效率。Iceberg可以有效支持批处理的高吞吐数据扫描和流计算按分区粒度并发实时处理。



推荐阅读
  • 本文探讨了如何在日常工作中通过优化效率和深入研究核心技术,将技术和知识转化为实际收益。文章结合个人经验,分享了提高工作效率、掌握高价值技能以及选择合适工作环境的方法,帮助读者更好地实现技术变现。 ... [详细]
  • Netflix利用Druid实现高效实时数据分析
    本文探讨了全球领先的在线娱乐公司Netflix如何通过采用Apache Druid,实现了高效的数据采集、处理和实时分析,从而显著提升了用户体验和业务决策的准确性。文章详细介绍了Netflix在系统架构、数据摄取、管理和查询方面的实践,并展示了Druid在大规模数据处理中的卓越性能。 ... [详细]
  • 一面问题:MySQLRedisKafka线程算法mysql知道哪些存储引擎,它们的区别mysql索引在什么情况下会失效mysql在项目中的优化场景&# ... [详细]
  • 58同城的Elasticsearch应用与平台构建实践
    本文由58同城高级架构师于伯伟分享,由陈树昌编辑整理,内容源自DataFunTalk。文章探讨了Elasticsearch作为分布式搜索和分析引擎的应用,特别是在58同城的实施案例,包括集群优化、典型应用实例及自动化平台建设等方面。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 通过Web界面管理Linux日志的解决方案
    本指南介绍了一种利用rsyslog、MariaDB和LogAnalyzer搭建集中式日志管理平台的方法,使用户可以通过Web界面查看和分析Linux系统的日志记录。此方案不仅适用于服务器环境,还提供了详细的步骤来确保系统的稳定性和安全性。 ... [详细]
  • 收割机|篇幅_国内最牛逼的笔记,不接受反驳!!
    收割机|篇幅_国内最牛逼的笔记,不接受反驳!! ... [详细]
  • 深入理解Kafka架构
    本文将详细介绍Kafka的内部工作机制,包括其工作流程、文件存储机制、生产者与消费者的具体实现,以及如何通过高效读写技术和Zookeeper支持来确保系统的高性能和稳定性。 ... [详细]
  • 本文从数据埋点的设计者视角出发,全面解析数据埋点的技术原理、应用场景及其管理方法,涵盖基础知识、实施策略、数据处理流程等内容。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 微软Exchange服务器遭遇2022年版“千年虫”漏洞
    微软Exchange服务器在新年伊始遭遇了一个类似于‘千年虫’的日期处理漏洞,导致邮件传输受阻。该问题主要影响配置了FIP-FS恶意软件引擎的Exchange 2016和2019版本。 ... [详细]
  • 本文深入探讨了 Redis 的两种持久化方式——RDB 快照和 AOF 日志。详细介绍了它们的工作原理、配置方法以及各自的优缺点,帮助读者根据具体需求选择合适的持久化方案。 ... [详细]
  • 在本周的白板演练中,Apache Flink 的 PMC 成员及数据工匠首席技术官 Stephan Ewen 深入探讨了如何利用保存点功能进行流处理中的数据重新处理、错误修复、系统升级和 A/B 测试。本文将详细解释保存点的工作原理及其应用场景。 ... [详细]
author-avatar
怪物-pp_912
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有