热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于深度学习的短时道路交通流预测:ConvLSTM+BiLSTM

文章信息《Short-TermTrafficFlowPredictionwithConvLSTM》。这篇文章是一篇会议论文,2017第九届无线通信与信号处理国际会议(

文章信息

《Short-Term Traffic Flow Prediction with ConvLSTM》。

这篇文章是一篇会议论文,2017第九届无线通信与信号处理国际会议(WCSP),福州大学物理与信息工程学院的几位老师,被引10次。

主体内容

本文提出了一种基于深度学习的短时交通流预测方法。交通流数据包含三个主要特征:时间特征、空间特征和周期性特征。我们把CNN和LSTM结合起来生成一个ConvLSTM模块,用于提取交通流的时空特征,然后使用Bi-LSTM(双向LSTM,Keras中有相应模块)提取交通流的周期特征。

利用ConvLSTM模块对相邻区域的短时交通流数据进行处理,提取时空特征;利用双向LSTM对预测点历史交通数据进行处理,提取交通流数据的周期特征。提出了一种无需数据预处理和数据特征提取的端到端深度学习短时交通流预测体系结构。最后,集中时空特征和周期特征对交通流进行预测。

创新点

既使用了ConvLSTM,又使用了Bi-LSTM, 结构新颖。

大家比较关注的算法实现

我们将交通流数据映射到一维向量。我们将预测点的交通流数据放入向量中心,根据与预测点的距离,将其他点的交通流数据依距离放在该向量中心(预测点)两侧。

将不同时刻的一维空间信息向量组合成矩阵如下:

其中s表示预测点(一列代表一个预测点),t表示时间。

周期数据可以表示为以下矩阵:

其中d代表昨天的相同时刻,w代表上周的相同时刻。

上述数据矩阵即为本文提出的深度神经网络结构的输入数据。其中,损失函数为MSE,优化器为RMSprop。

1、ConvLSTM的结构

ConvLSTM的输入数据既为公式3.1。一行作为一个向量,代表着一个time step所有预测点之间的空间信息,我们使用一维Conv(Conv1D)对公式3.1中的每一行进行处理,自然也是利用一维卷积核滤波器(kernal size=1),通过滑动滤波器获取每个time step局部感知域的卷积信息(空间信息)。然后,将局部特征聚合成全局特征。

紧接着加池化层,不同之处在于池化滤波器不进行复杂的卷积运算。本文中使用一维平均池化层(AveragePooling1D)。通过池化将生成的特征序列C缩减到原维度的一半大小。这两种特征提取使得深度神经网络在处理交通流数据时具有更高的失真容忍度。

分别对时间序列向量(式3.1中的每一行)的各个元素进行卷积和池化处理后,输出结果变为时间序列向量Ct = (C1, C2, C3,…,Ct)。向量中的每个元素都是区域内各点间交通流的空间相关性。(该表达式中每个元素代表着一个行向量,行向量的维度比式3.1中行向量的维度要小,因为经过了池化)

上面得到的时间序列向量Ct即为LSTM的输入数据。

2、 双向LSTM的结构(Bi-directional LSTM)

交通流也具有很强的周期性特征。本文将增加交通流的周期性特征作为补充信息来预测短期交通流。在提取交通流数据的周期性特征时,我们会同时处理前一天的同一时间和上一周的同一时间的交通流信息。在处理了历史信息后,得到了全时间序列数据(我想应该是将上一周的数据和前一天的数据放到预测当天数据的前面,组成全时间序列数据以获取周期性信息。)。

双向LSTM的结构由上下堆叠的两个单向LSTM组成。因此,Bi-LSTM的输入包含预测时间前后的时间序列,在每个T时刻,输入序列被输入给两个方向相反LSTM,输出由两个LSTM决定。每个反向LSTM的误差传播与正向LSTM传播算法相同。Bi-LSTM结构如下图所示,其中xi为LSTM的输入,Of为正向LSTM的输出,Ob表示反向LSTM的输出。

简单来说,就是再Keras中将LSTM换成Bidirectional(LSTM)即可。一些细节信息例如使用了多少个timestep, 历史数据如何处理输入到Bi-LSTM中,池化前后的维度变化 等,文章交代的并不清楚,毕竟会议论文。

Attention

如果你和我一样是轨道交通、交通运输、城市规划相关领域的,也愿意分享自己的科研生活,请加下面的二维码扫码进群,人数满员后加微信:Dr_JZhang,备注“进群”,我会拉你进交通大数据分享群!不愿意分享的请勿打扰哈!希望我们共同进步!

未来的你,一定会感谢,曾经拼命的自己。

—— 致未来的自己

Transportation-ML

与你分享科研成长的乐趣

长按二维码关注


推荐阅读
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • LeetCode 实战:寻找三数之和为零的组合
    给定一个包含 n 个整数的数组,判断该数组中是否存在三个元素 a、b、c,使得 a + b + c = 0。找出所有满足条件且不重复的三元组。 ... [详细]
  • 本文详细介绍了 Java 网站开发的相关资源和步骤,包括常用网站、开发环境和框架选择。 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • 本文介绍了实现人工智能的多种方法,并重点探讨了当前最热门的技术——通过深度学习训练神经网络。文章通过具体实例详细解释了神经网络的基本原理及其应用。 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 当前物联网领域十大核心技术解析:涵盖哪些关键技术?
    经过近十年的技术革新,物联网已悄然渗透到日常生活中,对社会产生了深远影响。本文将详细解析当前物联网领域的十大核心关键技术,包括但不限于:1. 军事物联网技术,该技术通过先进的感知设备实现战场环境的实时监测与数据传输,提升作战效能和决策效率。其他关键技术还包括传感器网络、边缘计算、大数据分析等,这些技术共同推动了物联网的快速发展和广泛应用。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • 拼多多的崛起之路
    随着4G通信技术的发展,互联网产品从PC端转向移动端,图像传输速度更快、更清晰,智能设备的应用提升了用户体验。移动互联网的普及为拼多多的崛起提供了时代背景。 ... [详细]
author-avatar
多米音乐_34363545
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有