热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

基于深度学习的光流估计算法汇总

光流估计是计算机视觉研究中的一个重要方向,其不像其他感知任务会显式的在应用中呈现。如今,光流估计也在基于视频的任务中承担着越来越重要的作用。光流&#x

光流估计是计算机视觉研究中的一个重要方向,其不像其他感知任务会显式的在应用中呈现。如今,光流估计也在基于视频的任务中承担着越来越重要的作用。


光流(Optical Flow)是一个有关物体运动的概念。最早由Gibson提出,描述的是空间中运动的物体在成像平面上,造成像素运动的瞬时速度。主要由以下三类组成:


场景中前景目标本身在移动


成像平面在移动(比如,相机)


或者两者共同运动而所产生的混合动作


光流是在一系列连续变化的图像中产生类似光“流动”的效果,故简称为光流。光流是一个有方向、有长度的矢量,光流估计的目的就是根据2个连续的帧来求解对应像素的运动速度(或偏移量)。根据是否选取图像稀疏点进行光流估计,可以将光流估计分为稀疏光流和稠密光流,

https://mp.weixin.qq.com/s/rWGr4I4OSr_954O88AdqWw


推荐阅读
  • 深入解析监督学习的核心概念与应用
    本文深入探讨了监督学习的基本原理及其广泛应用。监督学习作为机器学习的重要分支,通过利用带有标签的训练数据,能够有效构建预测模型。文章详细解析了监督学习的关键概念,如特征选择、模型评估和过拟合问题,并介绍了其在图像识别、自然语言处理等领域的实际应用。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 【转】强大的矩阵奇异值分解(SVD)及其应用
    在工程实践中,经常要对大矩阵进行计算,除了使用分布式处理方法以外,就是通过理论方法,对矩阵降维。一下文章,我在 ... [详细]
  • 自动驾驶中的9种传感器融合算法
    来源丨AI修炼之路在自动驾驶汽车中,传感器融合是融合来自多个传感器数据的过程。该步骤在机器人技术中是强制性的,因为它提供了更高的可靠性、冗余性以及最终的 ... [详细]
  • ipsec 加密流程(二):ipsec初始化操作
    《openswan》专栏系列文章主要是记录openswan源码学习过程中的笔记。Author:叨陪鲤Email:vip_13031075266163.comDate:2020.1 ... [详细]
  • 高效重装Windows 10系统指南
    如何快速地为您的电脑重装Windows 10系统?本文将详细介绍从下载系统镜像到安装完成的每一步操作。 ... [详细]
  • LeetCode 312. 戳气球 【动态规划】【Java】【困难】
    本文将详细介绍 LeetCode 312. 戳气球 问题的背景、解题思路及实现方法,包括题目描述、解题策略、代码实现及解题过程。 ... [详细]
  • 本文探讨了 TypeScript 中泛型的重要性和应用场景,通过多个实例详细解析了泛型如何提升代码的复用性和类型安全性。 ... [详细]
  • 本文整理了一份基础的嵌入式Linux工程师笔试题,涵盖填空题、编程题和简答题,旨在帮助考生更好地准备考试。 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 在机器学习领域,深入探讨了概率论与数理统计的基础知识,特别是这些理论在数据挖掘中的应用。文章重点分析了偏差(Bias)与方差(Variance)之间的平衡问题,强调了方差反映了不同训练模型之间的差异,例如在K折交叉验证中,不同模型之间的性能差异显著。此外,还讨论了如何通过优化模型选择和参数调整来有效控制这一平衡,以提高模型的泛化能力。 ... [详细]
  • 【图像分类实战】利用DenseNet在PyTorch中实现秃头识别
    本文详细介绍了如何使用DenseNet模型在PyTorch框架下实现秃头识别。首先,文章概述了项目所需的库和全局参数设置。接着,对图像进行预处理并读取数据集。随后,构建并配置DenseNet模型,设置训练和验证流程。最后,通过测试阶段验证模型性能,并提供了完整的代码实现。本文不仅涵盖了技术细节,还提供了实用的操作指南,适合初学者和有经验的研究人员参考。 ... [详细]
author-avatar
特别要_966
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有