热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

极限思想在计算机中的应用,数学极限思想的应用论文(共2篇)

第1篇:论高等数学之极限思想极限是高等数学最基本的概念之一,极限思想是近代数学的一种很重要的数学思想,是用极限概念分析问题和解决问题的一种数学极限思想&

第1篇:论高等数学之极限思想

极限是高等数学最基本的概念之一,极限思想是近代数学的一种很重要的数学思想,是用极限概念分析问题和解决问题的一种数学极限思想,本文从极限的定义、极限思想的价值、教学中如何渗透极限思想几个方面进行了简要论述。

1、极限的概念

1.1数列极限:设 为一个数列,a为一常数,若 ,总存在一个正整数N,使得当 时,有 ,称a是数列 的极限。

1.2函数极限:函数 在点a的某去心邻域内有定义,A为常数,若 ,总存在一个正数 ,使得当 时,有 ,称A是当x趋向于a时函数 的极限。

出于不同需要,还引进了不同意义下的极限概念,比如在集论中引进了集列的上、下极限的概念,在无穷级数论中引进级数绝对收敛与条件收敛的概念,以及在函数逼近论中引进了一致逼近、平均逼近等的极限概念.无论怎样定义,本质都是一样的,都是从有限观念发展到无限观念的过程。

2、极限思想的价值

极限思想揭示了变量与常量、无限与有限的关系,通过极限思想,我们可以从有限来认识无限,以直线近似代替曲线,以不变认识变化,从量变认识质变。极限思想具有创新作用,它广泛用于微分方程、积分方程、函数论、概率极限理论、微分几何、泛函分析、函数逼近论、计算数学、力学等领域。

生活中的例子:一张饼,第一天吃它的一半,第二天吃它的一半的一半,第三天吃它的一半的一半的一半,……这样,这张饼能吃完吗?显然吃不完,饼越来越小,但还是有的。只能说,这张饼的极限为零,但绝不是零。这就是一种极限思想的具体写照。

极限思想十分重要,贯穿整个数学体系,恰当的应用极限思想可以将一些问题简化,学生灵活运用极限思想意义重大。

3、将极限思想渗透到课堂教学中

3.1课堂上介绍一些体现极限思想的典故

哲学家庄周在《庄子天下篇》中说:“一尺之棰,日取其半,万世不竭”,将木棰长度的变化看作为一个无限的过程中去研究,古代数学家刘徽割圆术中“割之弥细,所失弦少,割之又割,以至于不可割,则与圆合体而无所失矣”也体现了极限思想。通过这些有趣的小故事,让学生从中体验和感受极限思想的妙处,激发兴趣。

3.2讲授新知识时渗透极限思想

在教学中,讲授新知识的同时体现极限思想,比如求曲线的切线斜率、圆面积、变速运动物体的瞬时速度、曲边梯形面积、曲顶柱体的体积等都是通过极限思想得以引入课题并解决问题的,还有空间集合体中圆柱、圆锥之间相互转化,圆锥是圆柱的上底逐渐缩小的一种极限状态,体现了一种动态的极限思想。

3.3体现极限思想的数学概念

高等数学中的许多概念都是利用极限来描述的,体现极限思想的数学概念比比皆是,下面就列举几个:

(1)函数连续的概念中用到极限式:

(2)导数的概念中有极限式:

(3)定积分的概念也是通过分划、取近似、求和、取极限得到的:

(4)无穷区间上的广义积分的定义也是通过有限区间的定积分取极限得到的:

(5)级数的收敛性也是用极限式定义的:若级数 的部分和数列极限存在,即 ,称级数收敛。

(6)无穷小的定义也是用极限来描述的:若有 ,称 为此变化过程中的无穷小。

(7)二元函数 在有界闭区域D上的二重积分定义也用到了极限,

(8)二元函数 在曲线L上的第一型曲线积分也是用极限定义的:

(9)多元函数偏导数也是用极限来定义的,

关于x的偏导数为: ,关于y的偏导数类似。

4、解决问题时利用极限思想

高等数学中的许多问题都是通过极限的思想方法来解决的,下面简单的举两个例子。

(1)如何求平面上曲边梯形的面积?

通过极限思想方法,利用无限分割,以直代曲、用无数个小矩形面积无限逼近曲边梯形的面积通过取极限最终来解决这个问题;

(2)如何求圆面积?

我们可以设定情境,利用极限思想方法,通过圆内接正多边形,无限增加内接正多边形的边数,利用内接正多边形的面积无限逼近圆面积的方法来解决的;

物体的瞬时速度、平面曲线的弧长、曲顶柱体的体积等问题都是利用极限思想方法解决的。教师在教学中恰当选取问题,利用极限思想解决问题,教学效果事半功倍,提高学生用极限思想方法解决相关问题的能力。

结束语

综上所述,极限思想是高等数学教学中的重难点,贯穿整个高数体系,在教学中教师要有意识的将极限思想渗入,通过恰当的方法让学生理解极限的概念和思想方法,让学生体会极限思想的妙处,体会“以直代曲、化零为整、化圆为方、以不变代变、以有限找无限”等的极限思想,提高学生应用极限思想方法解决问题的能力。

作者:谷亮 来源:建筑工程技术与设计 2015年10期

第2篇:高等数学中极限思想的应用

本文通过系统阐述极限理论在数学理论发展中的重要作用,说明了在高等教学中加强数学极限思想的必要性.

极限是高等数学中的一个非常重要的概念,极限思想贯穿于高等数学的各个部分.因此,理解极限概念所蕴涵的数学思想方法,对掌握高等数学中的其他概念有很大的帮助.

纵观数学的发展史,当初牛顿、莱布尼兹在创立微积分时取得了极其重要的创造性的成果,但由于缺乏清晰严格的“极限”和“无穷小”的概念,未能把微积分建牢固的基础上.之后数学界展开了一场长达十多年的关于微积分奠基问题的大论战.通过这场论战,大批数学家对微积分基础概念做了深入探讨,促进了微积分理论基础的建设.正是由于极限理论的完善,微积分才取得最后的胜利.而微积分的主要理论基础是极限论,高等数学中的导数、积分、级数、敛散、甚至数学中最基本的实数概念都要以极限概念为基础来建立.理解了极限的思想方法,掌握了极限的基本运用,以及有关它的一些重要性质,有助于学生理解其他数学概念,把握不同数学概念之间的本质联系.下面我就高等数学中的几个重要概念所蕴涵的极限思想作分析,以供教学参考.

一、导数的概念

导数概念不是数学家凭空想象出来的,而是从解决客观实际问题的过程中概括抽象出来的.要了解导数概念所蕴涵的数学思想方法,我们还是通过导数概念的引入来探讨.

几乎所有高等数学教材关于导数概念的引入都是通过求物体运动的瞬时速度和曲线的切线斜率.两个例子,虽然意义不同,但分析问题、解决问题的方法则是相同的,取得结论的方式也是一致的.它们都是刻画一个变量对另一个变量的变化快慢速度,也就是因变量对自变量的变化速度.舍弃这些例子各自的意义,抽出其共同的数学本质,即得到导数的概念:

称该级数收敛,S是该级数的和.若该级数的部分数列发散,则称该级数发散,此时该级数没有和.级数收敛的概念真正解决了无限小数是一个数理论问题.随着绝对收敛概念的建立,无限和运算结合律、交换律、分配率的成立范围在理论上才得以明确.同样借助极限,函数项级数一致收敛概念建立后,函数级数每项具有的分析性质,即连续性、可积性、可微性与其和函数间才建立了必然联系,无限和运算分别与极限运算、定积分运算、求导运算交换次序成为可能.

以上仅借助于导数的概念、定积分的概念和级数敛散性定义说明在高等数学中极限思想的应用.事实上,其他类型的极限概念可以通过类似法进行处理.在教学过程中,再辅以恰当的实例,使学生清楚、牢固地掌握极限概念、性质,以及相应的极限思想和方法.

作者:夏立标 来源:考试周刊 2013年77期



推荐阅读
  • 随着社交媒体的发展,‘三天可见’成为了许多人保护个人隐私的选择,但同时也无意间筑起了人际交往的一道墙。 ... [详细]
  • 本文探讨了如何在PHP与MySQL环境中实现高效的分页查询,包括基本的分页实现、性能优化技巧以及高级的分页策略。 ... [详细]
  • 本课程将于3月26日至3月29日通过在线直播形式进行,涵盖有限元法的基本概念及其在生物力学中的应用,包括使用Mimics和ANSYS软件进行建模和分析的具体操作。 ... [详细]
  • 本文介绍了如何利用jQuery实现对网页上多个div元素的显示与隐藏控制,包括基本的toggle方法及更复杂的显示隐藏逻辑。 ... [详细]
  • 本文探讨了Windows 10 64位系统的实际使用体验,并与Windows 7进行了详细对比,旨在帮助用户了解两者之间的主要差异及选择合适的操作系统。 ... [详细]
  • HBase 数据复制与灾备同步策略
    本文探讨了HBase在企业级应用中的数据复制与灾备同步解决方案,包括存量数据迁移及增量数据实时同步的方法。 ... [详细]
  • 如何更改Win10本地管理员账户名称
    本文详细介绍了更改Windows 10操作系统中本地管理员账户名称的方法,包括通过计算机管理界面进行操作的具体步骤。 ... [详细]
  • 本文探讨了程序员这一职业的本质,认为他们是专注于问题解决的专业人士。文章深入分析了他们的日常工作状态、个人品质以及面对挑战时的态度,强调了编程不仅是一项技术活动,更是个人成长和精神修炼的过程。 ... [详细]
  • TCP协议中的可靠传输机制分析
    本文深入探讨了TCP协议如何通过滑动窗口和超时重传来确保数据传输的可靠性,同时介绍了流量控制和拥塞控制的基本原理及其在实际网络通信中的应用。 ... [详细]
  • 在1995年,Simon Plouffe 发现了一种特殊的求和方法来表示某些常数。两年后,Bailey 和 Borwein 在他们的论文中发表了这一发现,这种方法被命名为 Bailey-Borwein-Plouffe (BBP) 公式。该问题要求计算圆周率 π 的第 n 个十六进制数字。 ... [详细]
  • 本文详细介绍了如何在Oracle VM VirtualBox中实现主机与虚拟机之间的数据交换,包括安装Guest Additions增强功能,以及如何利用这些功能进行文件传输、屏幕调整等操作。 ... [详细]
  • CSS Border 属性:solid 边框的使用详解
    本文详细介绍了如何在CSS中使用solid边框属性,包括其基本语法、应用场景及高级技巧,适合初学者和进阶用户参考。 ... [详细]
  • 2023年,Android开发前景如何?25岁还能转行吗?
    近期,关于Android开发行业的讨论在多个平台上热度不减,许多人担忧其未来发展。本文将探讨当前Android开发市场的现状、薪资水平及职业选择建议。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 二维码的实现与应用
    本文介绍了二维码的基本概念、分类及其优缺点,并详细描述了如何使用Java编程语言结合第三方库(如ZXing和qrcode.jar)来实现二维码的生成与解析。 ... [详细]
author-avatar
梅爱敏_629
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有