热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

深入解析下一代互联网协议:IPv6在网络架构中的应用与优势

随着互联网的迅猛发展,IPv4的32位地址资源在2011年2月宣告枯竭,导致互联网服务提供商(ISP)无法再申请新的地址段。为应对这一挑战,下一代互联网协议IPv6应运而生,并在网络架构中展现出显著的优势。本文深入解析了IPv6在提升网络容量、增强安全性及简化管理等方面的独特价值,探讨了其在网络架构中的应用前景和实际效益。

IP 是互联网的核心协议。
互联网经过几十年的飞速发展,到 2011 年 2 月,IPv4 的 32 位地址已经耗尽。
ISP 已经不能再申请到新的 IP 地址块了。
我国在 2014 – 2015 年也逐步停止了向新用户和应用分配 IPv4 地址。
解决 IP 地址耗尽的根本措施就是采用具有更大地址空间的新版本的 IP,即 IPv6。


IPv6 的基本首部


  • IPv6 仍支持无连接的传送,但将协议数据单元 PDU 称为分组。为方便起见,本书仍采用数据报这一名词。
  • 所引进的主要变化如下:

  1. 更大的地址空间。IPv6 将地址从 IPv4 的 32 位 增大到了 128 位。
  2. 扩展的地址层次结构
  3. 灵活的首部格式。 IPv6定义了许多可选的扩展首部。
  4. 改进的选项。 IPv6 允许数据报包含有选项的控制信息,其选项放在有效载荷中。
  5. 允许协议继续扩充
  6. 支持即插即用(即自动配置)。因此 IPv6 不需要使用 DHCP。
  7. 支持资源的预分配。 IPv6 支持实时视像等要求,保证一定的带宽和时延的应用。
  8. IPv6 首部改为 8 字节对齐。首部长度必须是 8 字节的整数倍。原来的 IPv4 首部是 4 字节对齐。

IPv6 数据报的一般形式

IPv6 数据报由两大部分组成:


  • 基本首部 (base header)
  • 有效载荷 (payload)。有效载荷也称为净负荷。有效载荷允许有零个或多个扩展首部 (extension header),再后面是数据部分。

在这里插入图片描述


IPv6 数据报的基本首部

IPv6 将首部长度变为固定的 40 字节,称为基本首部。
把首部中不必要的功能取消了,使得 IPv6 首部的字段数减少到只有 8 个。
IPv6 对首部中的某些字段进行了如下的更改:
在这里插入图片描述
在这里插入图片描述


  • 版本(version)—— 4 位。它指明了协议的版本,对 IPv6 该字段总是 6。
  • 通信量类(traffic class)—— 8 位。这是为了区分不同的 IPv6 数据报的类别或优先级。目前正在进行不同的通信量类性能的实验。
  • 流标号(flow label)—— 20 位。 “流”是互联网络上从特定源点到特定终点的一系列数据报, “流”所经过的路径上的路由器都保证指明的服务质量。所有属于同一个流的数据报都具有同样的流标号。
  • 有效载荷长度(payload length)—— 16 位。它指明 IPv6 数据报除基本首部以外的字节数(所有扩展首部都算在有效载荷之内),其最大值是 64 KB。
  • 下一个首部(next header)—— 8 位。它相当于 IPv4 的协议字段或可选字段。
  • 跳数限制(hop limit)—— 8 位。源站在数据报发出时即设定跳数限制。路由器在转发数据报时将跳数限制字段中的值减 1。当跳数限制的值为零时,就要将此数据报丢弃。
  • 源地址—— 128 位。是数据报的发送站的 IP 地址。
  • 目的地址—— 128 位。是数据报的接收站的 IP 地址。

IPv6 的扩展首部


  • IPv6 把原来 IPv4 首部中选项的功能都放在扩展首部中,并将扩展首部留给路径两端的源站和目的站的主机来处理。
  • 数据报途中经过的路由器都不处理这些扩展首部(只有一个首部例外,即逐跳选项扩展首部)
  • 这样就大大提高了路由器的处理效率

六种扩展首部

在 RFC 2460 中定义了六种扩展首部:


  1. 逐跳选项
  2. 路由选择
  3. 分片
  4. 鉴别
  5. 封装安全有效载荷
  6. 目的站选项

IPv6 的地址

IPv6 数据报的目的地址可以是以下三种基本类型地址之一:


  1. 单播 (unicast):传统的点对点通信。
  2. 多播 (multicast):一点对多点的通信。
  3. 任播 (anycast):这是 IPv6 增加的一种类型。任播的目的站是一组计算机,但数据报在交付时只交付其中的一个,通常是距离最近的一个。

结点与接口

  • IPv6 将实现 IPv6 的主机和路由器均称为结点
  • 一个结点就可能有多个与链路相连的接口。
  • IPv6 地址是分配给结点上面的接口的。

  1. 一个接口可以有多个单播地址
  2. 其中的任何一个地址都可以当作到达该结点的目的地址。即一个结点接口的单播地址可用来唯一地标志该结点

冒号十六进制记法

  • 在 IPv6 中,每个地址占 128 位,地址空间大于 3.4  1038 。
  • 为了使地址再稍简洁些,IPv6 使用冒号十六进制记法(colon hexadecimal notation, 简写为 colon hex)。
  • 每个 16 位的值用十六进制值表示,各值之间用冒号分隔。例如:
    68E6:8C64:FFFF:FFFF:0:1180:960A:FFFF
  • 在十六进制记法中,允许把数字前面的 0 省略。例如把 0000 中的前三个 0 省略,写成 1 个 0。

零压缩

  • 冒号十六进制记法可以允许零压缩 (zero compression),即一连串连续的零可以为一对冒号所取代。
    FF05:0:0:0:0:0:0:B3 可压缩为:
    FF05::B3
  • 注意:在任一地址中只能使用一次零压缩

点分十进制记法的后缀

  • 冒号十六进制记法可结合使用点分十进制记法的后缀,这种结合在 IPv4 向 IPv6 的转换阶段特别有用。
  • 例如:0:0:0:0:0:0:128.10.2.1
    再使用零压缩即可得出: ::128.10.2.1
  • CIDR 的斜线表示法仍然可用
  • 例如:60 位的前缀 12AB00000000CD3 可记为:
    12AB:0000:0000:CD30:0000:0000:0000:0000/60
    12AB::CD30:0:0:0:0/60 (零压缩)
    12AB:0:0:CD30::/60 (零压缩)

IPv6 地址分类

在这里插入图片描述


  • 未指明地址

  1. 这是 16 字节的全 0 地址,可缩写为两个冒号“::”。
  2. 这个地址只能为还没有配置到一个标准的 IP 地址的主机当作源地址使用。
  3. 这类地址仅此一个。

  • 环回地址

  1. 即 0:0:0:0:0:0:0:1(记为 ::1)。
  2. 作用和 IPv4 的环回地址一样。
  3. 这类地址也是仅此一个。

  • 多播地址

  1. 功能和 IPv4 的一样。
  2. 这类地址占 IPv6 地址总数的 1/256。

  • 本地链路单播地址 (Link-Local Unicast Address)

  1. 有些单位的网络使用 TCP/IP 协议,但并没有连接到互联网上。连接在这样的网络上的主机都可以使用这种本地地址进行通信,但不能和互联网上的其他主机通信。
  2. 这类地址占 IPv6 地址总数的 1/1024。

  • 全球单播地址

  1. IPv6 的这一类单播地址是使用得最多的一类。
  2. 曾提出过多种方案来进一步划分这 128 位的单播地址。
  3. 根据 2006 年发布的草案标准 RFC 4291 的建议, IPv6 单播地址的划分方法非常灵活。

在这里插入图片描述


从 IPv4 向 IPv6 过渡

向 IPv6 过渡只能采用逐步演进的办法,同时,还必须使新安装的 IPv6 系统能够向后兼容:IPv6 系统必须能够接收和转发 IPv4 分组,并且能够为 IPv4 分组选择路由。

两种向 IPv6 过渡的策略:


  • 使用双协议栈
  • 使用隧道技术

双协议栈

  • 双协议栈 (dual stack) 是指在完全过渡到 IPv6 之前,使一部分主机(或路由器)装有两个协议栈,一个 IPv4 和一个 IPv6
  • 双协议栈的主机(或路由器)记为 IPv6/IPv4,表明它同时具有两种 IP 地址:一个 IPv6 地址和一个 IPv4 地址
  • 双协议栈主机在和 IPv6 主机通信时是采用 IPv6 地址,而和 IPv4 主机通信时就采用 IPv4 地址。
  • 根据 DNS 返回的地址类型可以确定使用 IPv4 地址还是 IPv6 地址。

在这里插入图片描述


隧道技术


  • 在 IPv6 数据报要进入 IPv4 网络时,把 IPv6 数据报封装成为 IPv4 数据报,整个的 IPv6 数据报变成了 IPv4 数据报的数据部分。
  • 当 IPv4 数据报离开 IPv4 网络中的隧道时,再把数据部分(即原来的 IPv6 数据报)交给主机的 IPv6 协议栈。
    在这里插入图片描述

ICMPv6


  • IPv6 也不保证数据报的可靠交付,因为互联网中的路由器可能会丢弃数据报。
  • 因此 IPv6 也需要使用 ICMP 来反馈一些差错信息。新的版本称为 ICMPv6。
  • 地址解析协议 ARP 和网际组管理协议 IGMP 协议的功能都已被合并到 ICMPv6 中。
    在这里插入图片描述

ICMPv6 报文的分类

  • CMPv6 是面向报文的协议,它利用报文来报告差错,获取信息,探测邻站或管理多播通信。
  • ICMPv6 还增加了几个定义报文的功能及含义的其他协议。
    在这里插入图片描述

推荐阅读
  • 深入解析:存储技术的演变与发展
    本文探讨了从单机文件系统到分布式文件系统的存储技术发展过程,详细解释了各种存储模型及其特点。 ... [详细]
  • 2023年,Android开发前景如何?25岁还能转行吗?
    近期,关于Android开发行业的讨论在多个平台上热度不减,许多人担忧其未来发展。本文将探讨当前Android开发市场的现状、薪资水平及职业选择建议。 ... [详细]
  • 本文介绍了SIP(Session Initiation Protocol,会话发起协议)的基本概念、功能、消息格式及其实现机制。SIP是一种在IP网络上用于建立、管理和终止多媒体通信会话的应用层协议。 ... [详细]
  • 从理想主义者的内心深处萌发的技术信仰,推动了云原生技术在全球范围内的快速发展。本文将带你深入了解阿里巴巴在开源领域的贡献与成就。 ... [详细]
  • Web动态服务器Python基本实现
    Web动态服务器Python基本实现 ... [详细]
  • 深入理解:AJAX学习指南
    本文详细探讨了AJAX的基本概念、工作原理及其在现代Web开发中的应用,旨在为初学者提供全面的学习资料。 ... [详细]
  • 在Qt框架中,信号与槽机制是一种独特的组件间通信方式。本文探讨了这一机制相较于传统的C风格回调函数所具有的优势,并分析了其潜在的不足之处。 ... [详细]
  • 如何在U8系统中连接服务器并获取数据
    本文介绍了如何在U8系统中通过不同的方法连接服务器并获取数据,包括使用MySQL客户端连接实例的方法,如非SSL连接和SSL连接,并提供了详细的步骤和注意事项。 ... [详细]
  • 本文详细介绍了如何利用 Bootstrap Table 实现数据展示与操作,包括数据加载、表格配置及前后端交互等关键步骤。 ... [详细]
  • 计算机学报精选论文概览(2020-2022)
    本文汇总了2020年至2022年间《计算机学报》上发表的若干重要论文,旨在为即将投稿的研究者提供参考。 ... [详细]
  • 本文探讨了在SQL Server 2008环境下,当尝试删除拥有数据库架构的用户时遇到的问题及解决方案,包括如何查询和更改架构所有权。 ... [详细]
  • 深入探讨:Actor模型如何解决并发与分布式计算难题
    在现代软件开发中,高并发和分布式系统的设计面临着诸多挑战。本文基于Akka最新文档,详细探讨了Actor模型如何有效地解决这些挑战,并提供了对并发和分布式计算的新视角。 ... [详细]
  • 协程作为一种并发设计模式,能有效简化Android平台上的异步代码处理。自Kotlin 1.3版本引入协程以来,这一特性基于其他语言的成熟理念,为开发者提供了新的工具,以增强应用的响应性和效率。 ... [详细]
  • 本文详细介绍了Android系统的四层架构,包括应用程序层、应用框架层、库与Android运行时层以及Linux内核层,并提供了如何关闭Android系统的步骤。 ... [详细]
  • mysql 授权!!
    为什么80%的码农都做不了架构师?MySQL的权限系统围绕着两个概念:认证-确定用户是否允许连接数据库服务器授权-确定用户是否拥有足够的权限执 ... [详细]
author-avatar
生活更美好YE
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有