热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

机器学习:KNN-近邻算法

一、理论知识1、K近邻(k-NearestNeighbor,简称KNN)学习是一种常用的监督学习。工作机制:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后

一、理论知识

1、K近邻(k-Nearest Neighbor,简称KNN)学习是一种常用的监督学习

     工作机制:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个的信息来进行预测。且通常使用“投票法”。

 

2、以电影类型举例,现在已知部分电影的属性和分类,想要预测未知电影的分类。

      

  我们可以计算未知电影和其它电影的属性距离,这里直接采用几何距离(Euclidean Distance),即把每个属性化为不同维度的坐标,再利用距离公式

             

  计算结束后,递增排序,可以找到k个最近的样本。因为要采用“投票法”,即满足少数服从多数原则,所以K的取值一般为奇数。这里假设k=3,则最靠近的3个都为爱情电影,所以判断未知电影为爱情电影。

       

 

3、KNN算法伪码描述:

  (1) 计算已知类别数据集中的点与当前点之间的距离;

  (2) 按照距离递增次序排序;

  (3) 选取与当前点距离最小的k个点;

  (4) 确定前k个点所在类别的出现频率;

  (5) 返回前k个点出现频率最高的类别作为当前点的预测分类

 

4、优点:简单易于理解;通过对K的选择可具备丢噪音数据的健壮性

   缺点:(1)需要大量空间储存所有已知实例

      (2)算法执行效率低(需要比较所有已知实例与要分类的实例

           (3)当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例并未接近目标样本。

     

    缺点(3)的意思是,如图中的Y点,黑圈代表其k的取值,即黑圈内的点都是要进行投票的数据点。通过观察会发现Y显然与红点更近,然而因为紫色点在这个圈里数目更多,Y点就会被认为是紫色。对于这个缺点,通常我们用权重的方法改善,根据距离d改变权重,例如1/d,这样就能让离目标点近的数据点的权重更大一点,优化算法。

  

 

二、代码实现

  调用sklearn库中KNN算法分析著名的iris数据

 1 from sklearn import neighbors
 2 from sklearn import datasets
 3 
 4 knn = neighbors.KNeighborsClassifier()
 5 iris = datasets.load_iris()
 6 
 7 knn.fit(iris.data, iris.target)                          # 建立KNN模型,输入特征值和分类结果
 8 predictedLabel = knn.predict([[6.3, 1.2, 5.2, 1.6]])
 9 
10 print("predictedLabel is :"+ str(predictedLabel))
predictedLabel is :[1]

  有现成的库调用起来很方便,当然也可以自己写对应的算法,下面是KNN的算法。

 1 def classify0(inX, dataSet, labels, k):                  # KNN算法
 2     dataSetSize = dataSet.shape[0]
 3     diffMat = tile(inX, (dataSetSize,1)) - dataSet       #计算两个点的空间距离
 4     sqDiffMat = diffMat**2
 5     sqDistances = sqDiffMat.sum(axis=1)
 6     distances = sqDistances**0.5
 7     sortedDistIndicies = distances.argsort()
 8     classCount={}
 9     for i in range(k):                                   #选择距离最小的k个点
10         voteIlabel = labels[sortedDistIndicies[i]]
11         classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
12     sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)  # 按照第二个元素进行从小到大排序,最后返回发生频率最高的标签
13     return sortedClassCount[0][0]

 

三、参考资料

  《机器学习》—— 周志华

  《机器学习实战》—— Peter Harrington

 

ps:本人初学者,有错误欢迎指出。感谢。


推荐阅读
  • 长期从事ABAP开发工作的专业人士,在面对行业新趋势时,往往需要重新审视自己的发展方向。本文探讨了几位资深专家对ABAP未来走向的看法,以及开发者应如何调整技能以适应新的技术环境。 ... [详细]
  • 使用TabActivity实现Android顶部选项卡功能
    本文介绍如何通过继承TabActivity来创建Android应用中的顶部选项卡。通过简单的步骤,您可以轻松地添加多个选项卡,并实现基本的界面切换功能。 ... [详细]
  • 本文详细介绍了 `org.apache.tinkerpop.gremlin.structure.VertexProperty` 类中的 `key()` 方法,并提供了多个实际应用的代码示例。通过这些示例,读者可以更好地理解该方法在图数据库操作中的具体用途。 ... [详细]
  • 3.[15]Writeaprogramtolistallofthekeysandvaluesin%ENV.PrinttheresultsintwocolumnsinASCIIbet ... [详细]
  • 本文详细介绍了如何利用 Bootstrap Table 实现数据展示与操作,包括数据加载、表格配置及前后端交互等关键步骤。 ... [详细]
  • 本文详细介绍了如何在Spring框架中设置事件发布器、定义事件监听器及响应事件的具体步骤。通过实现ApplicationEventPublisherAware接口来创建事件发布器,利用ApplicationEvent类定义自定义事件,并通过ApplicationListener接口来处理这些事件。 ... [详细]
  • Maven + Spring + MyBatis + MySQL 环境搭建与实例解析
    本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • AI炼金术:KNN分类器的构建与应用
    本文介绍了如何使用Python及其相关库(如NumPy、scikit-learn和matplotlib)构建KNN分类器模型。通过详细的数据准备、模型训练及新样本预测的过程,展示KNN算法的实际操作步骤。 ... [详细]
  • 本文介绍了如何通过C#语言调用动态链接库(DLL)中的函数来实现IC卡的基本操作,包括初始化设备、设置密码模式、获取设备状态等,并详细展示了将TextBox中的数据写入IC卡的具体实现方法。 ... [详细]
  • 问题场景用Java进行web开发过程当中,当遇到很多很多个字段的实体时,最苦恼的莫过于编辑字段的查看和修改界面,发现2个页面存在很多重复信息,能不能写一遍?有没有轮子用都不如自己造。解决方式笔者根据自 ... [详细]
  • spring boot使用jetty无法启动 ... [详细]
  • 入门指南:使用FastRPC技术连接Qualcomm Hexagon DSP
    本文旨在为初学者提供关于如何使用FastRPC技术连接Qualcomm Hexagon DSP的基础知识。FastRPC技术允许开发者在本地客户端实现远程调用,从而简化Hexagon DSP的开发和调试过程。 ... [详细]
  • 如何在PHP中安装Xdebug扩展
    本文介绍了如何从PECL下载并编译安装Xdebug扩展,以及如何配置PHP和PHPStorm以启用调试功能。 ... [详细]
  • 深入解析层次聚类算法
    本文详细介绍了层次聚类算法的基本原理,包括其通过构建层次结构来分类样本的特点,以及自底向上(凝聚)和自顶向下(分裂)两种主要的聚类策略。文章还探讨了不同距离度量方法对聚类效果的影响,并提供了具体的参数设置指导。 ... [详细]
author-avatar
mobiledu2502862777
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有