热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

机器学习之隐马尔科夫模型HMM(六)

摘要隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程。其难点是从可观察的参数中确定该过程的隐含参数,然后利用
摘要

       隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程。其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析。在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小,然而在图像识别等领域HMM依然起着重要的作用。

引言

       隐马尔科夫模型是马尔科夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔科夫模型是一个双重随机过程----具有一定状态数的隐马尔科夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了90年代,HMM还被引入计算机文字识别和移动通信核心技术“多用户的检测”。HMM在生物信息科学、故障诊断等领域也开始得到应用。

      本文以中文分子算法为实践背景基础来讲述隐马尔科夫模型。本文主要分享了隐马尔科夫模型的概率计算、参数估计和模拟预测等方法,我们能够感受大HMM能够经久不衰的强大力量。

      马尔科夫模型在推导过程中用到了之前提到的一些经典算法需要融汇贯通。

预备知识:

       概率论和数理统计、矩阵论、贝叶斯网络、EM算法

一、隐马尔科夫模型

  1、定义

        隐马尔科夫模型(HMM,Hidden Markov Model)可用标注问题,在语音识别、NLP、生物信息、模式识别等领域被实践证明是有效的算法。

        HMM是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程。

        隐马尔科夫模型随机生成的状态随机序列,称为状态序列;每个状态生成一个观测,由此产生的观测随机序列,称为观测序列。

  技术分享图片

  Z是未知的,X是已知的,我们通过对X来做Z的推论,就是隐马尔科夫模型。

    2、HMM的确定:

  HMM由初始概率分布π、状态转移概率分布A以及观测概率分布B确定。

  技术分享图片 ,   技术分享图片描述整个隐码模型。

  3、HMM的参数:

  Q是所有可能的状态的集合,N是可能的状态数;

  V是所有可能的观测的集合,M是可能的观测数。

二、HMM的概率计算问题: 

  1、直接计算:

    按照概率公式,列举所有可能的长度为T的状态序列技术分享图片,求各个状态序列I与观测序列技术分享图片的联合概率技术分享图片,然后对所有可能的状态序列求和,

  从而得到技术分享图片

   2、前向算法

    前向概率定义:给定λ,定义到时刻t部分观测序列为且状态为技术分享图片且qi的概率称为前向概率,记做:技术分享图片

       前向算法计算方案:

    初值:技术分享图片

    递推:对于t=1,2,...,T-1

    有:技术分享图片

    最终:技术分享图片

  3、后向算法

    定义:给定λ,定义到时刻t状态为qi的前提下,从t+1到T的部分观测序列为技术分享图片的概率为后向概率,记做:技术分享图片 

    计算方法:

    初值:技术分享图片

    递推:对于t=T-1,T-2,...,1

     技术分享图片

    最终:技术分享图片

三、预测算法 

  1、预测的近似算法

  A. 在每个时刻t选择在该时刻最有可能出现的状态it*,从而得到一个状态序列I*={i1*,i2*…iT*},将它作为预测的结果。

  B. 给定模型和观测序列,时刻t处于状态qi的概率为:

   技术分享图片

  C. 选择概率最大的i作为最有可能的状态(注:会出现此状态在实际中可能不会发生的情况)

  2、Viterbi算法

       Viterbi算法实际是用动态规划解HMM预测问题,用DP求概率最大的路径(最优路径),这是一条路径对应一个状态序列。

     定义变量技术分享图片:在时刻t状态为i的所有路径中,概率的最大值。

   具体过程:

    定义:技术分享图片

    递推:技术分享图片

      技术分享图片

机器学习之隐马尔科夫模型HMM(六)


推荐阅读
  • 本文详细探讨了JavaScript中的作用域链和闭包机制,解释了它们的工作原理及其在实际编程中的应用。通过具体的代码示例,帮助读者更好地理解和掌握这些概念。 ... [详细]
  • Python 内存管理机制详解
    本文深入探讨了Python的内存管理机制,涵盖了垃圾回收、引用计数和内存池机制。通过具体示例和专业解释,帮助读者理解Python如何高效地管理和释放内存资源。 ... [详细]
  • C#设计模式学习笔记:观察者模式解析
    本文将探讨观察者模式的基本概念、应用场景及其在C#中的实现方法。通过借鉴《Head First Design Patterns》和维基百科等资源,详细介绍该模式的工作原理,并提供具体代码示例。 ... [详细]
  • Appium + Java 自动化测试中处理页面空白区域点击问题
    在进行移动应用自动化测试时,有时会遇到某些页面没有返回按钮,只能通过点击空白区域返回的情况。本文将探讨如何在Appium + Java环境中有效解决此类问题,并提供详细的解决方案。 ... [详细]
  • 如何清除Chrome浏览器地址栏的特定历史记录
    在使用Chrome浏览器时,你可能会发现地址栏保存了大量浏览记录。有时你可能希望删除某些特定的历史记录而不影响其他数据。本文将详细介绍如何单独删除地址栏中的特定记录以及批量清除所有历史记录的方法。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 利用Selenium与ChromeDriver实现豆瓣网页全屏截图
    本文介绍了一种使用Selenium和ChromeDriver结合Python代码,轻松实现对豆瓣网站进行完整页面截图的方法。该方法不仅简单易行,而且解决了新版Selenium不再支持PhantomJS的问题。 ... [详细]
  • 解决TensorFlow CPU版本安装中的依赖问题
    本文记录了在安装CPU版本的TensorFlow过程中遇到的依赖问题及解决方案,特别是numpy版本不匹配和动态链接库(DLL)错误。通过详细的步骤说明和专业建议,帮助读者顺利安装并使用TensorFlow。 ... [详细]
  • 气象对比分析
    本文探讨了不同地区和时间段的天气模式,通过详细的图表和数据分析,揭示了气候变化的趋势及其对环境和社会的影响。 ... [详细]
  • 探讨 HDU 1536 题目,即 S-Nim 游戏的博弈策略。通过 SG 函数分析游戏胜负的关键,并介绍如何编程实现解决方案。 ... [详细]
  • 深入解析动态代理模式:23种设计模式之三
    在设计模式中,动态代理模式是应用最为广泛的一种代理模式。它允许我们在运行时动态创建代理对象,并在调用方法时进行增强处理。本文将详细介绍动态代理的实现机制及其应用场景。 ... [详细]
  • 深入理解ExtJS:从入门到精通
    本文详细介绍了ExtJS的功能及其在大型企业前端开发中的应用。通过实例和详细的文件结构解析,帮助初学者快速掌握ExtJS的核心概念,并提供实用技巧和最佳实践。 ... [详细]
  • 通常情况下,修改my.cnf配置文件后需要重启MySQL服务才能使新参数生效。然而,通过特定命令可以在不重启服务的情况下实现配置的即时更新。本文将详细介绍如何在线调整MySQL配置,并验证其有效性。 ... [详细]
  • Python自动化测试入门:Selenium环境搭建
    本文详细介绍如何在Python环境中安装和配置Selenium,包括开发工具PyCharm的安装、Python环境的设置以及Selenium包的安装方法。此外,还提供了编写和运行第一个自动化测试脚本的步骤。 ... [详细]
  • 本文详细介绍如何在 iOS 7 环境下申请苹果开发者账号,涵盖从访问开发者网站到最终激活账号的完整流程。包括选择个人或企业账号类型、付款方式及注意事项等。 ... [详细]
author-avatar
Aaron阿龙_1947_446
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有