热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

【机器学习】隐含马尔科夫模型从初识到应用

一、前述马尔可夫(1856~1922),苏联数学家。切比雪夫的学生。在概率论、数论、函数逼近论和微分方程等方面卓有成就。马尔可夫模型&#x

一、前述

    马尔可夫(1856~1922),苏联数学家。切比雪夫的学生。在概率论、数论、函数逼近论和微分方程等方面卓有成就。
    马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域。经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。

二、具体

1、案例

问题一:
         如果今天的天气状况是晴天,那么明天是多云而且后天有雾的概率是多大?

         1*0.2*0.1(1*0.2是从晴天转多云的概率,*0.1是从多云转向有雾的概率)
问题二:
         如果今天有雾,那么两天后有雨的概率是多大?(第二天的天气可以是晴天、多云、有雨或有雾)

 

 概率累加即可

         
 问题三:    
         在天气问题中,如果今天是晴天,我们求第三天最可能的天气状况,应该怎么做?
   (假定今天的天气只能通过过去几天已知的天气情况进行预测——而对于其他因素,譬如风力、气压等则没有考虑。在这个例子以及其他相似的例子中,这样的假设显然是不现实的)

问题四:

直接算法
如果今天的天气状况是晴天,那么明天是多云而且后天有雾的概率是多大?
        p(S2=cloudy,S3=foggy|S1=sunny)
      =P(S3=foggy|S2=cloudy,S1=sunny)*P(S2=cloudy|S1=sunny)
      =P(S3=foggy|S2=cloudy)*P(S2=cloudy|S1=sunndy)
      =0.1*0.2
      =0.02
总结:

在问题一中,我们注意到注意每一个状态都是唯一的依赖于前一个状态,就像交通灯一样,如果交通灯为绿色,那么下一个颜色状态将始终是黄色——也就是说,该系统是确定性的。确定性系统相对比较容易理解和分析,因为状态间的转移是完全已知的,对于给定的天气状况,我们可以直接通过状态间的装换概率来计算,但问题二中,我们只已知了今天和后天的天气状况,而明天的天气状况是隐藏的,未知的,它可能是晴天、雨天、多雾、多云这些状态,所以,这个时候我们前面的状态马尔可夫模型就要做一些变化


2、   隐马尔可夫模型(Hidden Markov Model,HMM)概述

      在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。
而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。
       HMM(隐马尔科夫模型)是自然语言处理中的一个基本模型,用途比较广泛,如汉语分词、词性标注及语音识别等,在NLP中占有很重要的地位。
        一个更实际的问题是语音识别,我们听到的声音是来自于声带、喉咙大小、舌头位置以及其他一些东西的组合结果。所有这些因素相互作用产生一个单词的声音,一套语音识别系统检测的声音就是来自于个人发音时身体内部物理变化所引起的不断改变的声音。
  一些语音识别装置工作的原理是将内部的语音产出看作是隐藏的状态,而将声音结果作为一系列观察的状态,这些由语音过程生成并且最好的近似了实际(隐藏)的状态。在这两个例子中,需要着重指出的是,隐藏状态的数目与观察状态的数目可以是不同的。一个包含四个状态的天气系统(晴天、多云、雨天)中,一个观察现象;纯粹的语音可以由80个音素描述,而身体的发音系统会产生出不同数目的声音,或者比80多,或者比80少。
  在这种情况下,观察到的状态序列与隐藏过程有一定的概率关系。我们使用隐马尔科夫模型对这样的过程建模,这个模型包含了一个底层隐藏的随时间改变的马尔科夫过程,以及一个与隐藏状态某种程度相关的可观察到的状态集合。


3、   隐马尔可夫模型(Hidden Markov Model,HMM)原理

 

     HMM由初始概率分布Π,状态转移分布概率A以及观测概率分布B确定。


   Q是所有可能的状态的集合,N是可能的状态数:

 

  V是所有可能观测的集合,M是所有可能的观测数:

HMM由初始概率分布Π、状态转移概率分布A以及观测概率分布B确定。
 Π和A决定状态序列,B决定观测序列,因此HMM可以用三元符号表示,称为HMM三要素:
 

4、应用(对天气案例问题二)

        1、直接算法(暴力算法)

如果今天有雾,那么两天后有雨的概率是多大?(第二天的天气可以是晴天、多云、有雨或有雾)
       P(S3=foggy|S1=foggy)
=P(S3=foggy,S2=sunny|S1=foggy)+P(S3=foggy,S2=cloudy|S1=foggy)
  +P(S3=foggy,S2=rainy|S1=foggy)+P(S3=foggy,S2=foggy|S1=foggy)
=P(S3=foggy|S2=sunny)*P(S2=sunny|S1=foggy)+
   P(S3=foggy|S2=cloudy)*P(S2=cloudy|S1=foggy)+
   P(S3=foggy|S2=rainy)*P(S2=rainy|S1=foggy)+
    P(S3=foggy|S2=foggy)*P(S2=foggy|S1=foggy)
=0.1*0.0+0.1*0.4+0.1*0.3+0.3*0.3=0.16


    2、前向算法

 

 

 

       

 


转载于:https://www.cnblogs.com/LHWorldBlog/p/8759029.html


推荐阅读
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 自然语言处理(NLP)——LDA模型:对电商购物评论进行情感分析
    目录一、2020数学建模美赛C题简介需求评价内容提供数据二、解题思路三、LDA简介四、代码实现1.数据预处理1.1剔除无用信息1.1.1剔除掉不需要的列1.1.2找出无效评论并剔除 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 本文介绍如何使用Python进行文本处理,包括分词和生成词云图。通过整合多个文本文件、去除停用词并生成词云图,展示文本数据的可视化分析方法。 ... [详细]
  • 深入解析Serverless架构模式
    本文将详细介绍Serverless架构模式的核心概念、工作原理及其优势。通过对比传统架构,探讨Serverless如何简化应用开发与运维流程,并介绍当前主流的Serverless平台。 ... [详细]
  • 本文详细介绍了如何使用 HTML 和 CSS 对文件上传按钮进行样式美化,使用户界面更加友好和美观。 ... [详细]
  • LambdaMART算法详解
    本文详细介绍了LambdaMART算法的背景、原理及其在信息检索中的应用。首先回顾了LambdaMART的发展历程,包括其前身RankNet和LambdaRank,然后深入探讨了LambdaMART如何结合梯度提升决策树(GBDT)和LambdaRank来优化排序问题。 ... [详细]
  • 全能终端工具推荐:高效、免费、易用
    介绍一款备受好评的全能型终端工具——MobaXterm,它不仅功能强大,而且完全免费,适合各类用户使用。 ... [详细]
  • 专注于模式识别与机器学习的研究生,对于该领域内的就业方向及具体职位要求有着浓厚的兴趣。本文将探讨智能图像/视频处理工程师的岗位要求,并为相关专业的学生提供学习建议。 ... [详细]
  • 本文介绍了如何利用snownlp库对微博内容进行情感分析,包括安装、基本使用以及如何自定义训练模型以提高分析准确性。 ... [详细]
  • 本文由技术爱好者痞子衡撰写,详细介绍了一款名为pzh-speech的语音处理工具的开发背景与核心技术。该工具旨在简化语音处理流程,为开发者提供一个强大的开源解决方案。 ... [详细]
author-avatar
aaaa
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有