热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

Java算法之时间复杂度和空间复杂度的概念和计算

这篇文章主要介绍了Java算法之时间复杂度和空间复杂度的概念和计算,文中有非常详细的代码示例,对正在学习java的小伙伴们有非常好的帮助,需要的朋友可以参考下

一、算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。

在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。因为现在的内存不像以前那么贵,所以经常听到过牺牲空间来换取时间的说法

二、时间复杂度

2.1 时间复杂度的概念

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

算法中的基本操作的执行次数,为算法的时间复杂度。从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。

一个算法所花费的时间与其中语句的执行次数成正比例,
算法中的基本操作的执行次数,为算法的时间复杂度。

2.2 大O的渐进表示法

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

(1)推导大O阶方法

用常数1取代运行时间中的所有加法常数。在修改后的运行次数函数中,只保留最高阶项。如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶

代码如下(示例):

 void func(int N){
        int count = 0;//执行1次
        for (int i = 0; i  0) {//执行10次
            count++;
        }
        System.out.println(count);
    }

所以func方法的执行次数为 1+N2+2*N+1+10

我看到func的执行次数,如果当我们的N非常大时,假设N = 100,那么这里的+1和+10是不是可以忽略了,因为1002=10000,在一万面前+1和+10可以说是微乎其微了,所以+1和+10没什么区别。

这就用到了前面说了推导大O阶方法,

用常数1取代运行时间中的所有加法常数。

就变成了 1+N2+2*N+1+1

再来看

    在修改后的运行次数函数中,只保留最高阶项。

简化后 N2

    如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶

这里我们的最高阶项是2,但前面没有常数所以没必要去除,如果N2前面还有个2就是2N2就要去除2变成 N2
所以使用大O的渐进表示法以后,Func的时间复杂度为 O(N2)

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。时间复杂度是一个函数,只能大致估一下这个算法的时间复杂度。

2.3 时间复杂度的三种情况

另外有些算法的时间复杂度存在最好、平均和最坏情况。

(1) 最坏情况

最坏情况:任意输入规模的最大运行次数(上界) 也就是 O(N)

这里的N代表的是问题的规模

(2)最好情况

任意输入规模的最小运行次数(下界) 也就是 O(1)

(3)平均情况

任意输入规模的期望运行次数

注意:这里的平均情况并不是最好和最坏情况相加的平均值,而是我们期望运行的次数,有时候平均情况可能和最好或者是最坏情况一样。

在平常我们所说的时间复杂度一般说的都是算法的最坏情况

2.4 常见时间复杂度计算举例

2.4.1 例子

示例1:

void func2(int N) {
	int count = 0;//1
	for (int k = 0; k <2 * N ; k++) { //2*N
	   count++;
	}
	int M = 10;//1
	while ((M--) > 0) {//10
	   count++;
	}
	System.out.println(count);
}

1+2*N+1+10 通过推导大O阶方法后:时间复杂度为 O(N)

示例2:

void func3(int N, int M) {
int count = 0;//常数可以不加
for (int k = 0; k 
        

时间复杂度为:O(M+N)

示例3:

void func4(int N) {
int count = 0;
for (int k = 0; k <100; k++) {//用常数1取代运行时间中的所有加法常数
   count++;
}
System.out.println(count);
}

这里的时间复杂度为 O(1),因为传进来的N并没有使用

2.4.2 冒泡排序时间复杂度

示例4:

这是一个冒泡排序,我们来求一下它的最好最坏和平均情况的时间复杂度

void bubbleSort(int[] array) {
   for (int end = array.length; end > 0; end--) {
       boolean sorted = true;
       for (int i = 1; i  array[i]){
       		Swap(array, i - 1, i);
               sorted = false;
           }
       }
       if (sorted == true) {
           break;
       }
   }
}

最好:O(N)
最坏:O(N2)
平均:O(N)

这是一个经过优化后的冒泡排序,最好的情况就是该组数据已经是有序的了,所以只需走一遍就好了,也是是O(N).
而最坏的情况就把数组全部遍历了一遍就是 N2
我们前面说过平均情况就是我么个期望的情况,我们期望的当然就是O(N)

2.4.3 二分查找的时间复杂度

我们知道求时间复杂度一般求的都是最坏的情况,二分查找只有当我们找最旁边那两个个数时才是最坏情况,我们就假设我们要找的就是最边边的那个数。

public static int binarySearch(int[] arr,int x){
            int left = 0;
            int right = arr.length-1;
            int mid = 0;//中间下标

            while(left <= right){
                mid = left+(right-left)/2;
                if(arr[mid] > x){
                    right = mid - 1;
                }else if(arr[mid] 
        

在这里插入图片描述

所以二分查找的时间复杂度为 O(log2N)

2.4.4 递归的时间复杂度

递归的时间复杂度 = 递归的次数*每次递归执行的操作的次数

示例1:

long factorial(int N) {
 return N <2 &#63; N : factorial(N-1) * N;
}

这里的的递归次数为 N 次,这里没有循环,每次执行的是一个三目操作符相当于1次。所以为 N+1次,时间复杂度就是 O(N)。

示例2:

这是一个递归实现的斐波那契数列

public static int fib(int n){
        if(n==1||n==2){
            return 1;
        }else{
            return fib(n-1)+fib(n-2);
        }
}

斐波那契数列的递归次数其实就是一个等比数列求和,最后的执行次数为 (2n) - 1,通过通过推导大O阶方法最后的时间复杂度为 O(2N)

在这里插入图片描述

时间复杂度只是一个大概的,当数字足够大时这里缺失的部分并不影响我们时间复杂度的计算。

三、空间复杂度

3.1 空间复杂度概念

空间复杂度是对一个算法在运行过程中临时(额外)占用存储空间大小的量度
占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

3.2 空间复杂度的计算

(1) 冒泡排序

这个冒泡排序的空间复杂度为 O(1)

为什么呢?因为空间复杂度是为了解决一个问题额外申请了其他变量,这里的array数组并不是额外的它是必须的,但这里的 sorted 是额外申请的,它每循环一次就定一次为什么不是O(N)呢?因为每循环一次这个变量是不是不要了呢?所以来来回回就是这一个变量。

void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
     boolean sorted = true;//额外变量
     for (int i = 1; i  array[i]) {
             Swap(array, i - 1, i);
             sorted = false;
         }
     }
     if (sorted == true) {
         break;
     }
 }
}

(2) 斐波那契数列

这里的空间复杂度为 O(N)
这里为了求第1~N的斐波那契数列的代码,为了解决这个问题申请了一个额外的数组的空间,空间大小为 N+1。因为1是常数项,所以这个代码的空间复杂度为 O(N)

public static long[] fibonacci(int n) {
        long[] fibArray = new long[n + 1];//额外空间
        fibArray[0] = 0;
        fibArray[1] = 1;
        for (int i = 2; i <= n ; i++) {
            fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
        }
        return fibArray;
    }

(3)递归

这是一个求阶层的递归,他的空间复杂度为 O(N)
因为递归在递的过程中,每递一次都会都会创建一个临时变量。

long factorial(int N) {
 return N <2 &#63; N : factorial(N-1)*N;
}

四、总结

1.在平常我们所说的时间复杂度一般说的都是算法的最坏情况
2.时间复杂度度是一个函数,这个函数只能大致估一下这个算法的时间复杂度
3.空间复杂度是个算法在运行过程中额外占用存储空间大小的量度

到此这篇关于Java算法之时间复杂度和空间复杂度的概念和计算的文章就介绍到这了,更多相关Java时间复杂度和空间复杂度内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!


推荐阅读
  • 本文回顾了作者在求职阿里和腾讯实习生过程中,从最初的迷茫到最后成功获得Offer的心路历程。文中不仅分享了个人的面试经历,还提供了宝贵的面试准备建议和技巧。 ... [详细]
  • 春季职场跃迁指南:如何高效利用金三银四跳槽季
    随着每年的‘金三银四’跳槽高峰期的到来,许多职场人士都开始考虑是否应该寻找新的职业机会。本文将探讨如何制定有效的职业规划、撰写吸引人的简历以及掌握面试技巧,助您在这关键时期成功实现职场跃迁。 ... [详细]
  • 本文提供了一种有效的方法来解决当Android Studio因电脑意外重启而导致的所有import语句出现错误的问题。通过清除缓存和重建项目结构,可以快速恢复开发环境。 ... [详细]
  • 网络流24题——试题库问题
    题目描述:假设一个试题库中有n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算 ... [详细]
  • 本文介绍了如何利用OpenCV库进行图像的边缘检测,并通过Canny算法提取图像中的边缘。随后,文章详细说明了如何识别图像中的特定形状(如矩形),并应用四点变换技术对目标区域进行透视校正。 ... [详细]
  • 本文将探讨一个经典算法问题——最大连续子数组和。我们将从问题定义出发,逐步深入理解其背后的逻辑,并通过实例分析加深理解。 ... [详细]
  • H5技术实现经典游戏《贪吃蛇》
    本文将分享一个使用HTML5技术实现的经典小游戏——《贪吃蛇》。通过H5技术,我们将探讨如何构建这款游戏的两种主要玩法:积分闯关和无尽模式。 ... [详细]
  • 本文介绍了多维缩放(MDS)技术,这是一种将高维数据映射到低维空间的方法,通过保持原始数据间的关系,以便于可视化和分析。文章详细描述了MDS的原理和实现过程,并提供了Python代码示例。 ... [详细]
  • 本文详细介绍了如何在Spring框架中设置事件发布器、定义事件监听器及响应事件的具体步骤。通过实现ApplicationEventPublisherAware接口来创建事件发布器,利用ApplicationEvent类定义自定义事件,并通过ApplicationListener接口来处理这些事件。 ... [详细]
  • TCP协议中的可靠传输机制分析
    本文深入探讨了TCP协议如何通过滑动窗口和超时重传来确保数据传输的可靠性,同时介绍了流量控制和拥塞控制的基本原理及其在实际网络通信中的应用。 ... [详细]
  • Maven + Spring + MyBatis + MySQL 环境搭建与实例解析
    本文详细介绍如何使用MySQL数据库进行环境搭建,包括创建数据库表并插入示例数据。随后,逐步指导如何配置Maven项目,整合Spring框架与MyBatis,实现高效的数据访问。 ... [详细]
  • 对于初学者而言,搭建一个高效稳定的 Python 开发环境是入门的关键一步。本文将详细介绍如何利用 Anaconda 和 Jupyter Notebook 来构建一个既易于管理又功能强大的开发环境。 ... [详细]
  • 使用TabActivity实现Android顶部选项卡功能
    本文介绍如何通过继承TabActivity来创建Android应用中的顶部选项卡。通过简单的步骤,您可以轻松地添加多个选项卡,并实现基本的界面切换功能。 ... [详细]
  • 软件测试行业深度解析:迈向高薪的必经之路
    本文深入探讨了软件测试行业的发展现状及未来趋势,旨在帮助有志于在该领域取得高薪的技术人员明确职业方向和发展路径。 ... [详细]
  • 本周三大青年学术分享会即将开启
    由雷锋网旗下的AI研习社主办,旨在促进AI领域的知识共享和技术交流。通过邀请来自学术界和工业界的专家进行在线分享,活动致力于搭建一个连接理论与实践的平台。 ... [详细]
author-avatar
强心脏229
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有