热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

Java排序实现的心得分享

这篇文章主要介绍了Java排序实现的心得,有需要的朋友可以参考一下

1.概述
排序和查找是程序设计里的两类非常基本的问题,而现在也存在很多经典的算法用于解决这两类问题,本文主要对java中排序算法实现进行一个基本的探讨,希望能够起到抛砖引玉的作用。在此之前,首先问各位几个问题:你能写出一个正确的快排吗?快排在什么情况下真正的快?你的快排足够快吗?还可以进一步优化吗?带着这些问题,我们来看看jre7中快排是如何实现的吧。

Jre7中排序的实现类是DualPivotQuickSort.java,相比jre6有一些改变,主要发生在两个地方,一个是insertion sort的实现上,另一个是QuickSort实现中pivot从一个变成了两个。我们以int型的数组为例,该类中有个排序实现的核心方法,该方法的原型为

代码如下:

void sort(int[] a, int left, int right, boolean leftmost)

参数a为需要排序的数组,left代表需要排序的数组区间中最左边元素的索引,right代表区间中最右边元素的索引,leftmost代表该区间是否是数组中最左边的区间。举个例子:
数组:[2, 4, 8, 5, 6, 3, 0, -3, 9]可以分成三个区间(2, 4, 8){5, 6}<3, 0, -3, 9>
对于()区间,left=0, right=2, leftmost=true
对于 {}区间, left=3, right=4, leftmost=false,同理可得<>区间的相应参数

当区间长度小于47时,该方法会采用插入排序;否则采用快速排序。

2. 插入排序实现
当leftmost为true时,它会采用传统的插入排序(traditional insertion sort),代码也较简单,其过程类似打牌时抓牌插牌:

代码如下:

for (int i = left, j = i; i                     int ai = a[i + 1];
                    while (ai                         a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }

传统插入排序代码
当leftmost为false时,它采用一种新型的插入排序(pair insertion sort),改进之处在于每次遍历前面已排好序的数组需要插入两个元素,而传统插入排序在遍历过程中只需要为一个元素找到合适的位置插入。对于插入排序来讲,其关键在于为待插入元素找到合适的插入位置,为了找到这个位置,需要遍历之前已经排好序的子数组,所以对于插入排序来讲,整个排序过程中其遍历的元素个数决定了它的性能。很显然,每次遍历插入两个元素可以减少排序过程中遍历的元素个数,其实现代码如下:

代码如下:

for (int k = left; ++left <= right; k = ++left) {
                    int a1 = a[k], a2 = a[left];

                    if (a1                         a2 = a1; a1 = a[left];
                    }
                    while (a1                         a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2                         a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }

现在有个问题:为什么最左边的区间采用传统插入排序,其他的采用成对插入排序呢?加入用上述成对插入排序代码替换传统插入排序代码,会出现什么问题呢?期待大家自己来回答。。。
3. 快速排序实现
Jre7中对快速排序也做了改进,传统的快速排序是选取一个pivot(jre6种选取pivot的方法是挑选出数组最左边,中间和最右边位置的元素,将其中数值大小排在中间的元素作为pivot),然后分别从两端向中间遍历,把左边遍历过程中遇到的大于pivot的值和右边遍历中遇到的小于等于pivot的值进行交换,当遍历相遇后,插入pivot的值;这样就使得pivot左边的值均小于或等于pivot,pivot右边的值大于pivot;接下来再采用递归的方式对左边和右边分别进行排序。

通过上述分析,我们可以看到:插入排序的每一步是使数组的一个子区间绝对有序,而每一次循环的本质是使这个子区间不断扩大,所以我们可以看到其优化的方向是使每次循环遍历尽可能的使子区间扩大的速度变快,所以上面把每次遍历插入一个元素优化成每次插入两个元素。当然肯定有人会问,那为什么不把这个数字变得更大一点呢?比如每次遍历插入5个,10个。。。很显然,这样是不行,它的一个极端情况就是每次遍历插入n个(n为数组长度)。。。至于为什么,大家自己回答吧。

对于快速排序来讲,其每一次递归所做的是使需要排序的子区间变得更加有序,而不是绝对有序;所以对于快速排序来说,其性能决定于每次递归操作使待排序子区间变得有序的程度,另一个决定因素当然就是递归次数。快速排序使子区间变得相对有序的关键是pivot,所以我们优化的方向也应该在于pivot,那就增加pivot的个数吧,而且我们可以发现,增加pivot的个数,对递归次数并不会有太大影响,有时甚至可以使递归次数减少。和insert sort类似的问题就是,pivot增加为几个呢?很显然,pivot的值也不能太大;记住,任何优化都是有代价的,而增加pivot的代价就隐藏在每次交换元素的位置过程中。关子貌似卖的有点大了。。。下面我们就来看看pivot的值为2时,快速排序是如何实现的吧。其实现过程其实也不难理解:
1.  首先选取两个pivot,pivot的选取方式是将数组分成近视等长的六段,而这六段其实是被5个元素分开的,将这5个元素从小到大排序,取出第2个和第4个,分别作为pivot1和pivot2;
2.  Pivot选取完之后,分别从左右两端向中间遍历,左边遍历停止的条件是遇到一个大于等于pivot1的值,并把那个位置标记为less;右边遍历的停止条件是遇到一个小于等于pivot2的值,并把那个位置标记为great
3.  然后从less位置向后遍历,遍历的位置用k表示,会遇到以下几种情况:
a.  k位置的值比pivot1小,那就交换k位置和less位置的值,并是less的值加1;这样就使得less位置左边的值都小于pivot1,而less位置和k位置之间的值大于等于pivot1
b.  k位置的值大于pivot2,那就从great位置向左遍历,遍历停止条件是遇到一个小于等于pivot2的值,假如这个值小于pivot1,就把这个值写到less位置,把less位置的值写道k位置,把k位置的值写道great位置,最后less++,great--;加入这个值大于等于pivot1,就交换k位置和great位置,之后great—
4.  完成上述过程之后,带排序的子区间就被分成了三段(pivot2),最后分别对这三段采用递归就行了。

代码如下:

/*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)                *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */

Jre7中对排序实现的核心内容就如上所述,具体细节可参见相应类中的代码,如发现错误或不妥之处,望指正。


推荐阅读
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 深入理解C++中的KMP算法:高效字符串匹配的利器
    本文详细介绍C++中实现KMP算法的方法,探讨其在字符串匹配问题上的优势。通过对比暴力匹配(BF)算法,展示KMP算法如何利用前缀表优化匹配过程,显著提升效率。 ... [详细]
  • 探讨一个显示数字的故障计算器,它支持两种操作:将当前数字乘以2或减去1。本文将详细介绍如何用最少的操作次数将初始值X转换为目标值Y。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 本文探讨如何设计一个安全的加密和验证算法,确保生成的密码具有高随机性和低重复率,并提供相应的验证机制。 ... [详细]
  • 深入解析:手把手教你构建决策树算法
    本文详细介绍了机器学习中广泛应用的决策树算法,通过天气数据集的实例演示了ID3和CART算法的手动推导过程。文章长度约2000字,建议阅读时间5分钟。 ... [详细]
  • 在金融和会计领域,准确无误地填写票据和结算凭证至关重要。这些文件不仅是支付结算和现金收付的重要依据,还直接关系到交易的安全性和准确性。本文介绍了一种使用C语言实现小写金额转换为大写金额的方法,确保数据的标准化和规范化。 ... [详细]
  • 在给定的数组中,除了一个数字外,其他所有数字都是相同的。任务是找到这个唯一的不同数字。例如,findUniq([1, 1, 1, 2, 1, 1]) 返回 2,findUniq([0, 0, 0.55, 0, 0]) 返回 0.55。 ... [详细]
  • 本文探讨了卷积神经网络(CNN)中感受野的概念及其与锚框(anchor box)的关系。感受野定义了特征图上每个像素点对应的输入图像区域大小,而锚框则是在每个像素中心生成的多个不同尺寸和宽高比的边界框。两者在目标检测任务中起到关键作用。 ... [详细]
  • 网络攻防实战:从HTTP到HTTPS的演变
    本文通过一系列日记记录了从发现漏洞到逐步加强安全措施的过程,探讨了如何应对网络攻击并最终实现全面的安全防护。 ... [详细]
author-avatar
mobiledu2502876597
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有