热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

Java基于动态规划法实现求最长公共子序列及最长公共子字符串示例

这篇文章主要介绍了Java基于动态规划法实现求最长公共子序列及最长公共子字符串,简单描述了动态规划法的概念、原理,并结合实例形式分析了Java使用动态规划法求最长公共子序列以及最长公共子字符串相关实现技巧,需要的朋友可以参考下

本文实例讲述了Java基于动态规划法实现求最长公共子序列及最长公共子字符串。分享给大家供大家参考,具体如下:

动态规划法

经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

【问题】 求两字符序列的最长公共字符子序列

问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:

(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;

(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;

(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。

这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

求解:

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:

回溯输出最长公共子序列过程:

算法分析:

由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m * n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m * n)。

Java代码实现:

public class LCSProblem
{
  public static void main(String[] args)
  {
    //保留空字符串是为了getLength()方法的完整性也可以不保留
    //但是在getLength()方法里面必须额外的初始化c[][]第一个行第一列
    String[] x = {"", "A", "B", "C", "B", "D", "A", "B"};
    String[] y = {"", "B", "D", "C", "A", "B", "A"};
    int[][] b = getLength(x, y);
    Display(b, x, x.length-1, y.length-1);
  }
  /**
   * @param x
   * @param y
   * @return 返回一个记录决定搜索的方向的数组
   */
  public static int[][] getLength(String[] x, String[] y)
  {
    int[][] b = new int[x.length][y.length];
    int[][] c = new int[x.length][y.length];
    for(int i=1; i= c[i][j-1])
        {
          c[i][j] = c[i-1][j];
          b[i][j] = 0;
        }
        //对应第二或者第三个性质
        else
        {
          c[i][j] = c[i][j-1];
          b[i][j] = -1;
        }
      }
    }
    return b;
  }
  //回溯的基本实现,采取递归的方式
  public static void Display(int[][] b, String[] x, int i, int j)
  {
    if(i == 0 || j == 0)
      return;
    if(b[i][j] == 1)
    {
      Display(b, x, i-1, j-1);
      System.out.print(x[i] + " ");
    }
    else if(b[i][j] == 0)
    {
      Display(b, x, i-1, j);
    }
    else if(b[i][j] == -1)
    {
      Display(b, x, i, j-1);
    }
  }
}

运行结果:

B C B A

最长公共子字符串:类似最长子序列,只是公共子字符串要求必须是连续的。

java实现代码如下:

public class stringCompare {
  //在动态规划矩阵生成方式当中,每生成一行,前面的那一行就已经没有用了,因此这里只需使用一维数组,而不是常用的二位数组
  public static void getLCString(char[] str1, char[] str2) {
    int len1, len2;
    len1 = str1.length;
    len2 = str2.length;
    int maxLen = len1 > len2 ? len1 : len2;
    int[] max = new int[maxLen];// 保存最长子串长度的数组
    int[] maxIndex = new int[maxLen];// 保存最长子串长度最大索引的数组
    int[] c = new int[maxLen];
    int i, j;
    for (i = 0; i = 0; j--) {
        if (str2[i] == str1[j]) {
          if ((i == 0) || (j == 0))
            c[j] = 1;
          else
            c[j] = c[j - 1] + 1;//此时C[j-1]还是上次循环中的值,因为还没被重新赋值
        } else {
          c[j] = 0;
        }
        // 如果是大于那暂时只有一个是最长的,而且要把后面的清0;
        if (c[j] > max[0]) {
          max[0] = c[j];
          maxIndex[0] = j;
          for (int k = 1; k  0) {
        System.out.println("第" + (j + 1) + "个公共子串:");
        for (i = maxIndex[j] - max[j] + 1; i <= maxIndex[j]; i++)
          System.out.print(str1[i]);
        System.out.println(" ");
      }
    }
  }
  public static void main(String[] args) {
    String str1 = new String("binghaven");
    String str2 = new String("jingseven");
    getLCString(str1.toCharArray(), str2.toCharArray());
  }
}

输出:

000000000
010000000
002000001
000300000
000000000
000000010
000000100
000000020
001000003
第1个公共子串:
ing
第2个公共子串:
ven

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总》

希望本文所述对大家java程序设计有所帮助。


推荐阅读
  • 本文总结了优化代码可读性的核心原则与技巧,通过合理的变量命名、函数和对象的结构化组织,以及遵循一致性等方法,帮助开发者编写更易读、维护性更高的代码。 ... [详细]
  • 深入解析Java虚拟机(JVM)架构与原理
    本文旨在为读者提供对Java虚拟机(JVM)的全面理解,涵盖其主要组成部分、工作原理及其在不同平台上的实现。通过详细探讨JVM的结构和内部机制,帮助开发者更好地掌握Java编程的核心技术。 ... [详细]
  • Python中HOG图像特征提取与应用
    本文介绍如何在Python中使用HOG(Histogram of Oriented Gradients)算法进行图像特征提取,探讨其在目标检测中的应用,并详细解释实现步骤。 ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 版本控制工具——Git常用操作(下)
    本文由云+社区发表作者:工程师小熊摘要:上一集我们一起入门学习了git的基本概念和git常用的操作,包括提交和同步代码、使用分支、出现代码冲突的解决办法、紧急保存现场和恢复 ... [详细]
  • 深入解析ESFramework中的AgileTcp组件
    本文详细介绍了ESFramework框架中AgileTcp组件的设计与实现。AgileTcp是ESFramework提供的ITcp接口的高效实现,旨在优化TCP通信的性能和结构清晰度。 ... [详细]
  • 由二叉树到贪心算法
    二叉树很重要树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。单就面试而言,在 ... [详细]
  • 深入解析RDMA中的队列对(Queue Pair)
    本文将详细探讨RDMA架构中的关键组件——队列对(Queue Pair,简称QP),包括其基本概念、硬件与软件实现、QPC的作用、QPN的分配机制以及用户接口和状态机。通过这些内容,读者可以更全面地理解QP在RDMA通信中的重要性和工作原理。 ... [详细]
  • 本文介绍了一种基于选择排序思想的高效排序方法——堆排序。通过使用堆数据结构,堆排序能够在每次查找最大元素时显著提高效率。文章详细描述了堆排序的工作原理,并提供了完整的C语言代码实现。 ... [详细]
  • Android Studio 中查看应用程序崩溃日志的方法
    本文介绍如何在 Android Studio 中配置环境变量并使用 ADB 工具查看应用程序的崩溃日志,帮助开发者快速定位和解决问题。 ... [详细]
  • 本文将继续探讨前端开发中常见的算法问题,重点介绍如何将多维数组转换为一维数组以及验证字符串中的括号是否成对出现。通过多种实现方法的解析,帮助开发者更好地理解和掌握这些技巧。 ... [详细]
  • 如何使用 CleanMyMac X 2023 激活码解锁完整功能
    本文详细介绍了如何使用 CleanMyMac X 2023 激活码解锁软件的全部功能,并提供了一些优化和清理 Mac 系统的专业建议。 ... [详细]
  • 解决MacOS上Android Studio Gradle版本不匹配问题
    在MacOS系统中,升级Android Studio后可能会遇到Gradle版本不兼容的问题。当网络下载更新受阻时,可以使用本地已安装的Gradle版本来解决问题。本文将详细介绍如何配置本地Gradle环境以确保开发工作的顺利进行。 ... [详细]
  • Go语言实现经典排序算法:归并排序
    本文介绍如何使用Go语言实现经典的归并排序算法,探讨其原理、代码实现及性能特点。适合Golang开发者和编程爱好者。 ... [详细]
  • 深入理解Java多线程并发处理:基础与实践
    本文探讨了Java中的多线程并发处理机制,从基本概念到实际应用,帮助读者全面理解并掌握多线程编程技巧。通过实例解析和理论阐述,确保初学者也能轻松入门。 ... [详细]
author-avatar
kuqu00
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有