状态转移方程:d(i,j) = min(d(i,j),d(i,k)+d(k,j)),其中i
思路对于每一个k(i 输出结果 v0到v0最短路径为:0 其他:看了网上的一些关于floyd算法证明的过程。其实最主要的一点,证明求d(i,k)+d(k,j)时,d(i,k)和d(k,j)已经为各自的最小值。网上关于这个的证明文章非常的少,如果有大佬有严谨的证明过程还望不吝赐教。 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
public class FloydTest {
private static int[][] matrix;
private static int[][] path;
public static void main(String[] args) {
initMatrixAndPath(
new int[][]{
{0, 1, 8, 5},
{1, 0, 7, 6},
{8, 7, 0, 2},
{5, 6, 2, 0}}
);
floyd(matrix, path);
printShortDistance();
printShortDistanceDetail();
}
private static void initMatrixAndPath(int[][] matrix) {
FloydTest.matrix = matrix;
FloydTest.path = new int[matrix.length][matrix.length];
for (int i = 0; i
v0到v1最短路径为:1
v0到v2最短路径为:7
v0到v3最短路径为:5
v1到v0最短路径为:1
v1到v1最短路径为:0
v1到v2最短路径为:7
v1到v3最短路径为:6
v2到v0最短路径为:7
v2到v1最短路径为:7
v2到v2最短路径为:0
v2到v3最短路径为:2
v3到v0最短路径为:5
v3到v1最短路径为:6
v3到v2最短路径为:2
v3到v3最短路径为:0
最短路径[v0,v0]为:v0<--v0
最短路径[v0,v1]为:v1<--v0
最短路径[v0,v2]为:v2<--v3<--v0
最短路径[v0,v3]为:v3<--v0
最短路径[v1,v0]为:v0<--v1
最短路径[v1,v1]为:v1<--v1
最短路径[v1,v2]为:v2<--v1
最短路径[v1,v3]为:v3<--v1
最短路径[v2,v0]为:v0<--v3<--v2
最短路径[v2,v1]为:v1<--v2
最短路径[v2,v2]为:v2<--v2
最短路径[v2,v3]为:v3<--v2
最短路径[v3,v0]为:v0<--v3
最短路径[v3,v1]为:v1<--v3
最短路径[v3,v2]为:v2<--v3
最短路径[v3,v3]为:v3<--v3