热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

JS排序之快速排序详解

这篇文章主要为大家详细介绍了JS快速排序的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文为大家分享了JS快速排序的具体代码,供大家参考,具体内容如下

说明

时间复杂度指的是一个算法执行所耗费的时间
空间复杂度指运行完一个程序所需内存的大小
稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面
不稳定指,如果a=b,a在b的前面,排序后可能会交换位置

--JS快速排序--

原理

从数组中选定一个基数,然后把数组中的每一项与此基数做比较,小的放入一个新数组,大的放入另外一个新数组。然后再采用这样的方法操作新数组。直到所有子集只剩下一个元素,排序完成。

时间复杂度,空间复杂度,稳定性

  • 平均时间复杂度O(nlogn)
  • 最好情况O(nlogn)
  • 最差情况O(n*n)
  • 空间复杂度O(logn)
  • 稳定性:不稳定

快速排序的写法

var examplearr=[8,94,15,88,55,76,21,39];
function fastsort(arr){
  if(arr.length<2){
    return arr;
  }
  var left=[];
  var right=[];
  var pivotIndex=Math.floor(arr.length/2);
  var pivot=arr.splice(pivotIndex,1)[0];
  for(i=0;i

解析

pivotIndex是将数组的长度除2向下取整得到的一个数值,数组的长度是不断减半的,所以最后它的值为0

pivot是利用splice方法从数组里获取一个基数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


推荐阅读
  • 无论是在迁移到云服务还是更换云服务商的过程中,数据迁移都是一个至关重要的环节。本文将探讨数据迁移中可能遇到的问题及解决方案,包括路径问题、速度问题和数据完整性等。 ... [详细]
  • 兆芯X86 CPU架构的演进与现状(国产CPU系列)
    本文详细介绍了兆芯X86 CPU架构的发展历程,从公司成立背景到关键技术授权,再到具体芯片架构的演进,全面解析了兆芯在国产CPU领域的贡献与挑战。 ... [详细]
  • 本文介绍了Memcached分布式集群中的取模算法和一致性哈希算法的原理及其对缓存命中率的影响。通过详细分析,探讨了如何优化这些算法以提高系统的稳定性和性能。 ... [详细]
  • 单片机编程为何偏爱C语言
    尽管现代有许多高级编程语言如Java、Python等,但单片机编程依然广泛使用C语言。本文将探讨C语言在单片机编程中的优势及其原因。 ... [详细]
  • A*算法在AI路径规划中的应用
    路径规划算法用于在地图上找到从起点到终点的最佳路径,特别是在存在障碍物的情况下。A*算法是一种高效且广泛使用的路径规划算法,适用于静态和动态环境。 ... [详细]
  • 短暂的人生中,IT和技术只是其中的一部分。无论换工作还是换行业,最终的目标是成功、荣誉和收获。本文探讨了技术人员如何跳出纯技术的局限,实现更大的职业发展。 ... [详细]
  • 机器学习算法:SVM(支持向量机)
    SVM算法(SupportVectorMachine,支持向量机)的核心思想有2点:1、如果数据线性可分,那么基于最大间隔的方式来确定超平面,以确保全局最优, ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • 专业人士如何做自媒体 ... [详细]
  • 本文总结了《编程珠玑》第12章关于采样问题的算法描述与改进,并提供了详细的编程实践记录。参考了其他博主的总结,链接为:http://blog.csdn.net/neicole/article/details/8518602。 ... [详细]
  • 三角测量计算三维坐标的代码_双目三维重建——层次化重建思考
    双目三维重建——层次化重建思考FesianXu2020.7.22atANTFINANCIALintern前言本文是笔者阅读[1]第10章内容的笔记,本文从宏观的角度阐 ... [详细]
  • 非计算机专业的朋友如何拿下多个Offer
    大家好,我是归辰。秋招结束后,我已顺利入职,并应公子龙的邀请,分享一些秋招面试的心得体会,希望能帮助到学弟学妹们,让他们在未来的面试中更加顺利。 ... [详细]
  • PHP实现汉诺塔算法
    昨天研究了一天汉诺塔算法都没搞懂,感觉自己智商被碾压了,还不如《猩球崛起》中的那一只猩猩!!!起源传说最早发明这个问题的人是法国数学家『爱德华·卢卡斯』。在世界中心贝拿勒斯(在印度 ... [详细]
  • 本文介绍如何使用OpenCV和线性支持向量机(SVM)模型来开发一个简单的人脸识别系统,特别关注在只有一个用户数据集时的处理方法。 ... [详细]
  • 本文介绍了如何通过路由汇总和无类域间路由(CIDR)技术来优化路由表,减少路由条目数量,提高网络效率。具体案例展示了路由汇总的实现方法及其对网络性能的影响。 ... [详细]
author-avatar
水瓶颜如_991
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有