热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

JDK容器Vector源码剖析

今天开始,看一下JDK容器源码,这要比比其他jdk源码要简单的多,大部分都能看的懂,这里就不在多言。重点是:Vector的扩容机制:若自动增长量小于0,则新长度为当前长度的两倍,否

          今天开始,看一下JDK容器源码,这要比比其他jdk源码要简单的多,大部分都能看的懂,这里就不在多言。重点是:

Vector的扩容机制:

若自动增长量小于0,则新长度为当前长度的两倍,否则为旧容量+capacityIncrement

和线程安全的原因就是因为使用了同步控制 synchronized.

package java.util;  

public class Vector
extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{

// 保存Vector中数据的数组
protected Object[] elementData;

// 实际数据的数量
protected int elementCount;

// 容量增长系数
protected int capacityIncrement;

// Vector的序列版本号
private static final long serialVersiOnUID= -2767605614048989439L;

// Vector构造函数。默认容量是10。
public Vector() {
this(10);
}

// 指定Vector容量大小的构造函数
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}

// 指定Vector"容量大小"和"增长系数"的构造函数
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity <0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
// 新建一个数组,数组容量是initialCapacity
this.elementData = new Object[initialCapacity];
// 设置容量增长系数
this.capacityIncrement = capacityIncrement;
}

// 指定集合的Vector构造函数。
public Vector(Collection c) {
// 获取“集合(c)”的数组,并将其赋值给elementData
elementData = c.toArray();
// 设置数组长度
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}

// 将数组Vector的全部元素都拷贝到数组anArray中
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}

// 将当前容量值设为 =实际元素个数
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount elementData = Arrays.copyOf(elementData, elementCount);
}
}

// 确认“Vector容量”的帮助函数
private void ensureCapacityHelper(int minCapacity) {
int oldCapacity = elementData.length;
// 当Vector的容量不足以容纳当前的全部元素,增加容量大小。
// 若 容量增量系数>0(即capacityIncrement>0),则将容量增大当capacityIncrement
// 否则,将容量增大一倍。
if (minCapacity > oldCapacity) {
Object[] oldData = elementData;
int newCapacity = (capacityIncrement > 0) ?
(oldCapacity + capacityIncrement) : (oldCapacity * 2);
if (newCapacity newCapacity = minCapacity;
}
elementData = Arrays.copyOf(elementData, newCapacity);
}
}

// 确定Vector的容量。
public synchronized void ensureCapacity(int minCapacity) {
// 将Vector的改变统计数+1
modCount++;
ensureCapacityHelper(minCapacity);
}

// 设置容量值为 newSize
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
// 若 "newSize 大于 Vector容量",则调整Vector的大小。
ensureCapacityHelper(newSize);
} else {
// 若 "newSize 小于/等于 Vector容量",则将newSize位置开始的元素都设置为null
for (int i = newSize ; i elementData[i] = null;
}
}
elementCount = newSize;
}

// 返回“Vector的总的容量”
public synchronized int capacity() {
return elementData.length;
}

// 返回“Vector的实际大小”,即Vector中元素个数
public synchronized int size() {
return elementCount;
}

// 判断Vector是否为空
public synchronized boolean isEmpty() {
return elementCount == 0;
}

// 返回“Vector中全部元素对应的Enumeration”
public Enumeration elements() {
// 通过匿名类实现Enumeration
return new Enumeration() {
int count = 0;

// 是否存在下一个元素
public boolean hasMoreElements() {
return count }

// 获取下一个元素
public E nextElement() {
synchronized (Vector.this) {
if (count return (E)elementData[count++];
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}

// 返回Vector中是否包含对象(o)
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}


// 从index位置开始向后查找元素(o)。
// 若找到,则返回元素的索引值;否则,返回-1
public synchronized int indexOf(Object o, int index) {
if (o == null) {
// 若查找元素为null,则正向找出null元素,并返回它对应的序号
for (int i = index ; i if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则正向找出该元素,并返回它对应的序号
for (int i = index ; i if (o.equals(elementData[i]))
return i;
}
return -1;
}

// 查找并返回元素(o)在Vector中的索引值
public int indexOf(Object o) {
return indexOf(o, 0);
}

// 从后向前查找元素(o)。并返回元素的索引
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}

// 从后向前查找元素(o)。开始位置是从前向后的第index个数;
// 若找到,则返回元素的“索引值”;否则,返回-1。
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);

if (o == null) {
// 若查找元素为null,则反向找出null元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
// 若查找元素不为null,则反向找出该元素,并返回它对应的序号
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}

// 返回Vector中index位置的元素。
// 若index月结,则抛出异常
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}

return (E)elementData[index];
}

// 获取Vector中的第一个元素。
// 若失败,则抛出异常!
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[0];
}

// 获取Vector中的最后一个元素。
// 若失败,则抛出异常!
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return (E)elementData[elementCount - 1];
}

// 设置index位置的元素值为obj
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}

// 删除index位置的元素
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
} else if (index <0) {
throw new ArrayIndexOutOfBoundsException(index);
}

int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}

// 在index位置处插入元素(obj)
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}

// 将“元素obj”添加到Vector末尾
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}

// 在Vector中查找并删除元素obj。
// 成功的话,返回true;否则,返回false。
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}

// 删除Vector中的全部元素
public synchronized void removeAllElements() {
modCount++;
// 将Vector中的全部元素设为null
for (int i = 0; i elementData[i] = null;

elementCount = 0;
}

// 克隆函数
public synchronized Object clone() {
try {
Vector v = (Vector) super.clone();
// 将当前Vector的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}

// 返回Object数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}

// 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public synchronized T[] toArray(T[] a) {
// 若数组a的大小 // 则新建一个T[]数组,数组大小是“Vector的元素个数”,并将“Vector”全部拷贝到新数组中
if (a.length return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());

// 若数组a的大小 >= Vector的元素个数;
// 则将Vector的全部元素都拷贝到数组a中。
System.arraycopy(elementData, 0, a, 0, elementCount);

if (a.length > elementCount)
a[elementCount] = null;

return a;
}

// 获取index位置的元素
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);

return (E)elementData[index];
}

// 设置index位置的值为element。并返回index位置的原始值
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);

Object oldValue = elementData[index];
elementData[index] = element;
return (E)oldValue;
}

// 将“元素e”添加到Vector最后。
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}

// 删除Vector中的元素o
public boolean remove(Object o) {
return removeElement(o);
}

// 在index位置添加元素element
public void add(int index, E element) {
insertElementAt(element, index);
}

// 删除index位置的元素,并返回index位置的原始值
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index];

int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work

return (E)oldValue;
}

// 清空Vector
public void clear() {
removeAllElements();
}

// 返回Vector是否包含集合c
public synchronized boolean containsAll(Collection c) {
return super.containsAll(c);
}

// 将集合c添加到Vector中
public synchronized boolean addAll(Collection c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
// 将集合c的全部元素拷贝到数组elementData中
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
}

// 删除集合c的全部元素
public synchronized boolean removeAll(Collection c) {
return super.removeAll(c);
}

// 删除“非集合c中的元素”
public synchronized boolean retainAll(Collection c) {
return super.retainAll(c);
}

// 从index位置开始,将集合c添加到Vector中
public synchronized boolean addAll(int index, Collection c) {
modCount++;
if (index <0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);

Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);

int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew, numMoved);

System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
}

// 返回两个对象是否相等
public synchronized boolean equals(Object o) {
return super.equals(o);
}

// 计算哈希值
public synchronized int hashCode() {
return super.hashCode();
}

// 调用父类的toString()
public synchronized String toString() {
return super.toString();
}

// 获取Vector中fromIndex(包括)到toIndex(不包括)的子集
public synchronized List subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex), this);
}

// 删除Vector中fromIndex到toIndex的元素
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);

// Let gc do its work
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
}

// java.io.Serializable的写入函数
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject();
}
}



推荐阅读
  • 集合的遍历方式及其局限性
    本文介绍了Java中集合的遍历方式,重点介绍了for-each语句的用法和优势。同时指出了for-each语句无法引用数组或集合的索引的局限性。通过示例代码展示了for-each语句的使用方法,并提供了改写为for语句版本的方法。 ... [详细]
  • Java容器中的compareto方法排序原理解析
    本文从源码解析Java容器中的compareto方法的排序原理,讲解了在使用数组存储数据时的限制以及存储效率的问题。同时提到了Redis的五大数据结构和list、set等知识点,回忆了作者大学时代的Java学习经历。文章以作者做的思维导图作为目录,展示了整个讲解过程。 ... [详细]
  • 本文介绍了如何在给定的有序字符序列中插入新字符,并保持序列的有序性。通过示例代码演示了插入过程,以及插入后的字符序列。 ... [详细]
  • Spring特性实现接口多类的动态调用详解
    本文详细介绍了如何使用Spring特性实现接口多类的动态调用。通过对Spring IoC容器的基础类BeanFactory和ApplicationContext的介绍,以及getBeansOfType方法的应用,解决了在实际工作中遇到的接口及多个实现类的问题。同时,文章还提到了SPI使用的不便之处,并介绍了借助ApplicationContext实现需求的方法。阅读本文,你将了解到Spring特性的实现原理和实际应用方式。 ... [详细]
  • 本文探讨了C语言中指针的应用与价值,指针在C语言中具有灵活性和可变性,通过指针可以操作系统内存和控制外部I/O端口。文章介绍了指针变量和指针的指向变量的含义和用法,以及判断变量数据类型和指向变量或成员变量的类型的方法。还讨论了指针访问数组元素和下标法数组元素的等价关系,以及指针作为函数参数可以改变主调函数变量的值的特点。此外,文章还提到了指针在动态存储分配、链表创建和相关操作中的应用,以及类成员指针与外部变量的区分方法。通过本文的阐述,读者可以更好地理解和应用C语言中的指针。 ... [详细]
  • 本文详细介绍了Java中vector的使用方法和相关知识,包括vector类的功能、构造方法和使用注意事项。通过使用vector类,可以方便地实现动态数组的功能,并且可以随意插入不同类型的对象,进行查找、插入和删除操作。这篇文章对于需要频繁进行查找、插入和删除操作的情况下,使用vector类是一个很好的选择。 ... [详细]
  • [大整数乘法] java代码实现
    本文介绍了使用java代码实现大整数乘法的过程,同时也涉及到大整数加法和大整数减法的计算方法。通过分治算法来提高计算效率,并对算法的时间复杂度进行了研究。详细代码实现请参考文章链接。 ... [详细]
  • Iamtryingtomakeaclassthatwillreadatextfileofnamesintoanarray,thenreturnthatarra ... [详细]
  • 本文介绍了使用Java实现大数乘法的分治算法,包括输入数据的处理、普通大数乘法的结果和Karatsuba大数乘法的结果。通过改变long类型可以适应不同范围的大数乘法计算。 ... [详细]
  • JavaSE笔试题-接口、抽象类、多态等问题解答
    本文解答了JavaSE笔试题中关于接口、抽象类、多态等问题。包括Math类的取整数方法、接口是否可继承、抽象类是否可实现接口、抽象类是否可继承具体类、抽象类中是否可以有静态main方法等问题。同时介绍了面向对象的特征,以及Java中实现多态的机制。 ... [详细]
  • 个人学习使用:谨慎参考1Client类importcom.thoughtworks.gauge.Step;importcom.thoughtworks.gauge.T ... [详细]
  • 本文介绍了Java的集合及其实现类,包括数据结构、抽象类和具体实现类的关系,详细介绍了List接口及其实现类ArrayList的基本操作和特点。文章通过提供相关参考文档和链接,帮助读者更好地理解和使用Java的集合类。 ... [详细]
  • 猜字母游戏
    猜字母游戏猜字母游戏——设计数据结构猜字母游戏——设计程序结构猜字母游戏——实现字母生成方法猜字母游戏——实现字母检测方法猜字母游戏——实现主方法1猜字母游戏——设计数据结构1.1 ... [详细]
  • 标题: ... [详细]
  • Java学习笔记之面向对象编程(OOP)
    本文介绍了Java学习笔记中的面向对象编程(OOP)内容,包括OOP的三大特性(封装、继承、多态)和五大原则(单一职责原则、开放封闭原则、里式替换原则、依赖倒置原则)。通过学习OOP,可以提高代码复用性、拓展性和安全性。 ... [详细]
author-avatar
小小小小修领_233
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有