热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

IBM:最新突破将大幅提升深度学习速度

近年来,处理器技术进入如此大,一个像U盘那么大的设备现在都可以用于为神经网络提供能量。但是,企业通常很难充分发挥其计算能力,因为实施大规模人工智能过程中还存在的根本挑战。

IBM:最新突破将大幅提升深度学习速度

这个问题和可扩展性有关,本周二IBM发布了一种名为分布式深度学习(Distributed Deep Learning,DDL)的软件库来解决这个问题。深度学习是机器学习的一个子集,旨在教计算机以人类相同的方式进行学习。例如,人们不会通过描述这个生物有4条腿、1个鼻子和1条尾巴的事实来识别出这是一只狗。一旦人们知道狗是什么样子,就会与猫做永久性的区分。深度学习试图在软件中复制这种方法。

大多数深度学习的框架都支持跨多个服务器扩展大型模式的能力,很多现在也支持GPU,但是收集和同步分析结果的方式还远远不够,IBM研究部门总监Hillery Hunter表示。

同步的工作流

深度学习模式运行在计算机集群上,通过GPU进行增强,GPU芯片有数百万个分布式和互相关联的处理元素,其作用大致类似于人类大脑中的神经元。这些人造神经元一起处理信息,就像人类的部分一样,每个神经元都处理一小部分数据。当节点完成计算的时候,结果将同步在其他神经网络上,以帮助协调工作。

在IBM看来,这就是瓶颈所在。人造神经元部署运行在越快的GPU上,完成计算的速度就越快,意味着结果的同步更加频繁。由于AI集群的构建方式,如果环境中芯片的数量增加,同样适用。但是深度学习框架只能频繁地同步数据。

因此,处理速度收到了数据在GPU之间传输的限制。DDL利用所谓的多层通信算法来改变这一平衡。这个软件库修改信息发送通过的网络路径,以实现延迟和带宽之间“最优化”的平衡,让通信不再是主要的瓶颈。

创纪录的性能

在一次内部测试中,IBM在一个有数百个GPU的集群上部署了DDL,并从一个受欢迎的研究数据集中发送处理750万个图像,将其分到22000个分类中的一个或者多个。该模型在经过7个小时的训练之后,可准确识别33.8%的对象,打包了之前微软在经过10天训练之后创下的29.8%的纪录。

如果4%的改进听起来不足为奇,而且整体成功率还比较低,这是因为这个模型远比现实中遇到的更为复杂,IBM高性能计算及人工智能副总裁Sumit Gupta表示。所以改进是循序渐进的,他指出,微软此前的纪录只比上一次改进了0.8%。这个基准测试旨在强调深度学习软件,以证明研究人员真正构建了更好的模型。

DDL在训练人工智能开发的过程中尤其有用,这是整个项目生命中其中占用时间最长的之一。有时候模型需要花费几周甚至几个月的时间来处理样品数据,才能变得足够准确用于生产中。IBM称,在某些情况下IBM的软件库可以将这个过程缩短至几个小时。“如果需要16天时间训练一个模型如何识别新的信用卡,那么这16天你就是在亏本的。”

深度学习在医疗场景中也很有用,例如组织分析,长时间的训练关于生存或者死亡的问题。此外还有其他好处,如果一个深度学习模型可以在数小时而不是数周时间内完成训练,那么就能释放企业的人工智能基础设施,用于更快地完成其他项目和其他工作。

IBM还另外展示了如何利用DDL实现95%的扩展效率,相比之下Facebook在此前的测试中记录是89%。这两个测试都使用了相同的样本数据。

IBM表示,DDL帮助企业培训他们的模型,实现此前由于时间限制而无法实现的速度和范围。它将DDL软件库与所有主流深度学习框架相连接,包括TensorFlow、Caffee、Chainer、Torch和Theano,都是在一个开源许可下的。

IBM还将这个软件库融入到自己的PowerAI深度学习共计套件平台中,有免费和付费企业两个版本,此外还有在Minbix Minsky Power Cloud上。Gupta表示:“我们将通过PowerAI把它带给每个人。”






原文发布时间为:2017年8月9日 
本文作者:黄雅琦
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

推荐阅读
  • 本文深入探讨了 hCalendar 微格式在事件与时间、地点相关活动标记中的应用。作为微格式系列文章的第四篇,前文已分别介绍了 rel 属性用于定义链接关系、XFN 微格式增强链接的人际关系描述以及 hCard 微格式对个人和组织信息的描述。本次将重点解析 hCalendar 如何通过结构化数据标记,提高事件信息的可读性和互操作性。 ... [详细]
  • 第二章:Kafka基础入门与核心概念解析
    本章节主要介绍了Kafka的基本概念及其核心特性。Kafka是一种分布式消息发布和订阅系统,以其卓越的性能和高吞吐量而著称。最初,Kafka被设计用于LinkedIn的活动流和运营数据处理,旨在高效地管理和传输大规模的数据流。这些数据主要包括用户活动记录、系统日志和其他实时信息。通过深入解析Kafka的设计原理和应用场景,读者将能够更好地理解其在现代大数据架构中的重要地位。 ... [详细]
  • Ihavetwomethodsofgeneratingmdistinctrandomnumbersintherange[0..n-1]我有两种方法在范围[0.n-1]中生 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 解决Bootstrap DataTable Ajax请求重复问题
    在最近的一个项目中,我们使用了JQuery DataTable进行数据展示,虽然使用起来非常方便,但在测试过程中发现了一个问题:当查询条件改变时,有时查询结果的数据不正确。通过FireBug调试发现,点击搜索按钮时,会发送两次Ajax请求,一次是原条件的请求,一次是新条件的请求。 ... [详细]
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
  • 在2019中国国际智能产业博览会上,百度董事长兼CEO李彦宏强调,人工智能应务实推进其在各行业的应用。随后,在“ABC SUMMIT 2019百度云智峰会”上,百度展示了通过“云+AI”推动AI工业化和产业智能化的最新成果。 ... [详细]
  • 深入解析国内AEB应用:摄像头和毫米波雷达融合技术的现状与前景
    本文作者程建伟,武汉极目智能技术有限公司CEO,入选武汉市“光谷3551人才计划”。文章详细探讨了国内自动紧急制动(AEB)系统中摄像头与毫米波雷达融合技术的现状及未来前景。通过分析当前技术的应用情况、存在的挑战以及潜在的解决方案,作者指出,随着传感器技术的不断进步和算法优化,AEB系统的性能将大幅提升,为交通安全带来显著改善。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • 斯坦福大学公开课:利用神经网络技术实现自动驾驶的案例分析
    斯坦福大学的公开课深入探讨了如何利用神经网络技术实现自动驾驶。课程中通过实例展示了汽车如何通过学习算法自主驾驶。具体而言,课程展示了一幅图解,其中左下角显示了汽车前方的实时路况图像,而左上角则呈现了一个水平的菜单栏,用于展示系统处理和决策的过程。这一案例详细解析了神经网络在自动驾驶中的应用,为学生提供了宝贵的实践参考。 ... [详细]
  • Cosmos生态系统为何迅速崛起,波卡作为跨链巨头应如何应对挑战?
    Cosmos生态系统为何迅速崛起,波卡作为跨链巨头应如何应对挑战? ... [详细]
  • 每日学术推荐:异质图神经网络在抽取式文档摘要中的应用研究
    在抽取式文档摘要任务中,学习跨句子关系是至关重要的一步。本文探讨了利用异质图神经网络来捕捉句子间复杂关系的有效方法。通过构建包含不同类型节点和边的图结构,模型能够更准确地识别和提取关键信息,从而生成高质量的摘要。实验结果表明,该方法在多个基准数据集上显著优于传统方法。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 通过使用CIFAR-10数据集,本文详细介绍了如何快速掌握Mixup数据增强技术,并展示了该方法在图像分类任务中的显著效果。实验结果表明,Mixup能够有效提高模型的泛化能力和分类精度,为图像识别领域的研究提供了有价值的参考。 ... [详细]
  • Python 实战:异步爬虫(协程技术)与分布式爬虫(多进程应用)深入解析
    本文将深入探讨 Python 异步爬虫和分布式爬虫的技术细节,重点介绍协程技术和多进程应用在爬虫开发中的实际应用。通过对比多进程和协程的工作原理,帮助读者理解两者在性能和资源利用上的差异,从而在实际项目中做出更合适的选择。文章还将结合具体案例,展示如何高效地实现异步和分布式爬虫,以提升数据抓取的效率和稳定性。 ... [详细]
author-avatar
golanger
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有