热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

回归分析和amos路径分析,amos路径系数怎么画

基于Amos的路径分析与模型参数详解1数据准备1.1数据格式转换2结构方程模型建立2.1变量相互关系确定2.2路径图绘制2.3数据导入3模型运行与结果3.1模

基于Amos的路径分析与模型参数详解 1 数据准备1.1 数据格式转换 2 结构方程模型建立2.1 变量相互关系确定2.2 路径图绘制2.3 数据导入 3 模型运行与结果3.1 模型方法参数选择3.2 模型输出参数选择3.3 模型运行3.4 模型结果
  系列文章共有四篇,本文为第一篇,主要关注相关流程的操作方法。
  博客2:基于Amos路径分析的输出结果参数详解
  博客3:基于Amos路径分析的模型拟合参数详解
  博客4:基于Amos路径分析的模型修正与调整

1 数据准备

  本文所用数据包括某地百余个土壤采样点对应的一种土壤属性含量变量(BC)及与其有关的5种环境变量(Temp,Slope,Roden,POI,GAIA),存储于“xlsx”文件内。由于本文所用的土壤采样点空间数据集并不是我的,因此遗憾不能将这一数据一并提供给大家;但是依据本篇博客的思想与对操作步骤的详细解释,大家用自己手头的数据,可以将相关操作与分析过程加以完整重现。

1.1 数据格式转换

  首先,为了Amos软件可以更方便地读取数据,我们首先将Excel格式的数据转为SPSS的“.sav”格式文件。
  打开SPSS Statistics软件,选择“文件”→“打开”→“数据”。

  选择存储初始数据的Excel文件并打开。

  随后,将其保存并配置文件名、路径等。

  即可看到新保存的“.sav”文件。

2 结构方程模型建立 2.1 变量相互关系确定

  首先确定每一个变量之间的相互关系。本文就针对上述土壤属性数据,判断得到变量之间的相互关系。

RoDen影响POI
RoDen影响Temp
POI影响Temp
GAIA影响POI
GAIA影响Temp
GAIA影响Roden
Temp影响BC
GAIA影响BC

2.2 路径图绘制

  随后,依据上述关系在Amos中绘制路径图。其中,由于AMOS路径图表示的为线性回归模型,因此所有因变量(即有箭头指向的变量)都需加上一个残差项(就是下图中这个圆圆的东西)。在这里关于绘图的具体操作,大家可以参考这里,本文就不再赘述啦。

  上面绘制的路径图有点丑,可以用软件左侧的“魔术棒”(Touch up a variable按钮)加以调整。

2.3 数据导入

  路径图结构绘制完成后,我们将第一部分处理好的数据导入模型。点击Amos左侧“Select data files”按钮。

  选中Group Name后,点击“File Name”,选中需要的“.sav”数据。在“N”中看到数据的样本个数正确,即说明数据导入成功。

  随后,点击软件左侧“List variables in data set”按钮,将对应的数据放入矩形框中。

  可以看到“List variables in model”中已经有了我们需要探究的5种变量。


  随后对残差项加以命名。点击软件上方的“Plugins”→“Name Unobserved Variables”,即可实现对图中的全部残差项加以命名。

  如下图所示。

  至此,即完成了路径图的绘制(上图BC忘记加残差项了,到了后面运行模型时才发现)。可先将模型保存,方便后期的使用。

3 模型运行与结果 3.1 模型方法参数选择

  点击软件左侧“Analysis properties”,打开“Estimation”,即可对模型的相关方法加以选择。

  其中,左上角“Discrepancy”(误差)方框内为模型拟合参数的估计方法。我们需要做的是,寻求合适的模型参数,使得模型隐含的协方差矩阵(即再生矩阵)与样本自身的协方差矩阵的“Discrepancy”(误差)尽可能小。那么左上角这些方法,便是使得误差尽可能小的不同方法。

  在这里,模型拟合参数的估计方法默认为第一个“Maximum likelihood”(最大似然法),其适合于样本数量较多、所得观测数据符合多元正态分布的情况(这一方法最为常用)。第二个为“一般最小化平方法”,其适合于样本数量较多、所得观测数据不符合多元正态分布的情况。第三个为“无加权最小二乘法”,其与第二个均位全信息估计方法,但“无加权最小二乘法”需要数据的观察尺度相同。第四个为“自由度量最小二乘法”。第五个为“任意分布法”,若样本数量超过1000,且数据不服从正太分布时可以用此方法。

  右上角第一个为“Estimate means and intercepts”,即是否计算平均值与截距。在以下三种情况中,我们可以勾选此项:

数据有缺失。数据为时序性数据。需要进行Anova分析或Manova分析。

  右上角第二个为“Emulisrel6”,若勾选此项,模型会得到与“LISREL”软件(另一款与Amos类似的软件,个人认为可以将“Emulisrel6”理解为其内核)一致的结果。

  右侧第三个为“Chicorrect”,其作用为指定常数r的值。若此框为空白,r的值将以组数为准。需要注意的是,当均值和截距是高度约束的模型参数时,应考虑在此框中填写0。

  下方为“For the purpose of computing fit measures with incomplete data”选项,即确定在数据包含缺失值时,是否需要调整从而适合饱和模型和/或独立模型。其中,饱和模型是指各观测变量之间均允许相关的最复杂模型,其自由度为0。换句话说,饱和模型就是人为设定约束条件最少、纯粹按照数据相互关系来构建的最优、理想状态下的模型。对于饱和模型而言,其隐藏协方差应当和样本协方差一致(而对于过度限定的模型而言并非如此,在此情况下,若保证模型正确,其隐藏协方差较之样本协方差更接近总体协方差)。此处三个选项分别为“适合饱和的独立模型”“仅适合饱和模型”与“均不适合”。

3.2 模型输出参数选择

  点击软件左侧“Analysis properties”,打开“Output”,即可对输出的结果加以选择。这里均位各种模型情况评估指标,例如模型整体拟合度评估指标、测量模型评估指标和结构模型评估指标等。一般的,我们按照如下的设置即可。此处参数更为细致的介绍可以查看这篇博客,此处参数的具体分析方法可以查看这篇博客。

3.3 模型运行

  点击软件左侧“Calculate estimaters”,即可对模型加以运行。但是第一次运行报错如下:

  这就是上述提到的,BC忘记加残差项。修改后便可以正常运行模型。

3.4 模型结果

  运行模型,完成后如下图:

  其中,左侧红色区域表明了本次模型的执行结果。我们看第二段内容即可,其中,其含义分别如下:

Scanning AllData5Factor:扫描初始数据
Reading data:读取数据
106 cases:数据共有106个样本
Default model:模型运用了默认的方法获取差异值,即下图的ML方法(最大似然法)
Minimization:模型运用了最小化方法进行迭代
Minimum was achieved:取得了差异最小值
Writing output:输出结果
Chi-square = 8.3, df= 2:卡方为8.3,自由度为2

  此外,在模型上方的视图调整按钮,我们可以选择在右图中显示输出非标准化结果或标准化结果图像。其中,若为非标准化结果,自变量、残差旁的数字代表其方差;而对于标准化结果,箭头旁的数字代表对应回归方程的R方。


  此外,点击软件左侧“View Text”按钮,可以查看更为详细的模型结果。

  关于模型运行后所得结果更为细致的介绍可以查看这篇博客,以及这篇博客。

欢迎关注公众号:疯狂学习GIS


推荐阅读
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • IneedtofocusTextCellsonebyoneviaabuttonclick.ItriedlistView.ScrollTo.我需要通过点击按钮逐个关注Tex ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 1.如何在运行状态查看源代码?查看函数的源代码,我们通常会使用IDE来完成。比如在PyCharm中,你可以Ctrl+鼠标点击进入函数的源代码。那如果没有IDE呢?当我们想使用一个函 ... [详细]
  • 本文详细介绍了如何使用 Yii2 的 GridView 组件在列表页面实现数据的直接编辑功能。通过具体的代码示例和步骤,帮助开发者快速掌握这一实用技巧。 ... [详细]
  • 本文深入探讨 MyBatis 中动态 SQL 的使用方法,包括 if/where、trim 自定义字符串截取规则、choose 分支选择、封装查询和修改条件的 where/set 标签、批量处理的 foreach 标签以及内置参数和 bind 的用法。 ... [详细]
  • 本文详细介绍了Akka中的BackoffSupervisor机制,探讨其在处理持久化失败和Actor重启时的应用。通过具体示例,展示了如何配置和使用BackoffSupervisor以实现更细粒度的异常处理。 ... [详细]
  • Python自动化处理:从Word文档提取内容并生成带水印的PDF
    本文介绍如何利用Python实现从特定网站下载Word文档,去除水印并添加自定义水印,最终将文档转换为PDF格式。该方法适用于批量处理和自动化需求。 ... [详细]
  • 在使用 DataGridView 时,如果在当前单元格中输入内容但光标未移开,点击保存按钮后,输入的内容可能无法保存。只有当光标离开单元格后,才能成功保存数据。本文将探讨如何通过调用 DataGridView 的内置方法解决此问题。 ... [详细]
  • 本文介绍了如何通过 Maven 依赖引入 SQLiteJDBC 和 HikariCP 包,从而在 Java 应用中高效地连接和操作 SQLite 数据库。文章提供了详细的代码示例,并解释了每个步骤的实现细节。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • 本文详细介绍了 GWT 中 PopupPanel 类的 onKeyDownPreview 方法,提供了多个代码示例及应用场景,帮助开发者更好地理解和使用该方法。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • 导航栏样式练习:项目实例解析
    本文详细介绍了如何创建一个具有动态效果的导航栏,包括HTML、CSS和JavaScript代码的实现,并附有详细的说明和效果图。 ... [详细]
  • 本文由瀚高PG实验室撰写,详细介绍了如何在PostgreSQL中创建、管理和删除模式。文章涵盖了创建模式的基本命令、public模式的特性、权限设置以及通过角色对象简化操作的方法。 ... [详细]
author-avatar
暴躁的玩具
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有