热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

HashMap实例分析

这篇“HashMap实例分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅

这篇“HashMap实例分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“HashMap实例分析”文章吧。

场景扮演

面试官: 你先自我介绍一下吧!

安琪拉: 我是安琪拉,草丛三婊之一,最强中单(钟馗不服)!哦,不对,串场了,我是**,目前在--公司做--系统开发。

面试官: 看你简历上写熟悉Java集合,HashMap用过的吧?

安琪拉: 用过的。(还是熟悉的味道)

面试官: 那你跟我讲讲HashMap的内部数据结构?

安琪拉: 目前我用的是JDK1.8版本的,内部使用数组 + 链表 / 红黑树;

安琪拉: 方便我给您画个数据结构图吧:

面试官: 那你清楚HashMap的数据插入原理吗?

安琪拉: 呃[做沉思状]。我觉得还是应该画个图比较清楚,如下:

1.判断数组是否为空,为空进行初始化;

2.不为空,计算 k 的 hash 值,通过 (n - 1) & hash计算应当存放在数组中的下标 index ;

3.查看 table[index] 是否存在数据,没有数据就构造一个Node节点存放在 table[index] 中;

4.存在数据,说明发生了hash冲突, 继续判断key是否相等,相等,用新的value替换原数据(onlyIfAbsent为false);

5.如果不相等,判断当前节点类型是不是树型节点,如果是树型节点,创建树型节点插入红黑树中;

6.如果不是树型节点,创建普通Node加入链表中;判断链表长度是否大于 8, 大于的话链表转换为红黑树;

7.插入完成之后判断当前节点数是否大于阈值,如果大于开始扩容为原数组的二倍。

面试官: 刚才你提到HashMap的初始化,那HashMap怎么设定初始容量大小的吗?

安琪拉: [这也算问题??] 一般如果new HashMap() 不传值,默认大小是16,负载因子是0.75, 如果自己传入初始大小k,初始化大小为 大于k的 2的整数次方,例如如果传10,大小为16。(补充说明:实现代码如下)

static final int tableSizeFor(int cap) {  
  int n = cap - 1;  
  n |= n >>> 1;  
  n |= n >>> 2;  
  n |= n >>> 4;  
  n |= n >>> 8;  
  n |= n >>> 16;  
  return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;  
}

补充说明:下图是详细过程,算法就是让初始二进制分别右移1,2,4,8,16位,与自己异或,把高位第一个为1的数通过不断右移,把高位为1的后面全变为1,111111 + 1 = 1000000  = (符合大于50并且是2的整数次幂 )

面试官:  你提到hash函数,你知道HashMap的哈希函数怎么设计的吗?

安琪拉:  [问的还挺细] hash函数是先拿到通过key 的hashcode,是32位的int值,然后让hashcode的高16位和低16位进行异或操作。

面试官:  那你知道为什么这么设计吗?

安琪拉:  [这也要问],这个也叫扰动函数,这么设计有二点原因:

一定要尽可能降低hash碰撞,越分散越好; 算法一定要尽可能高效,因为这是高频操作, 因此采用位运算; 面试官:  为什么采用hashcode的高16位和低16位异或能降低hash碰撞?hash函数能不能直接用key的hashcode?

[这问题有点刁钻], 安琪拉差点原地爆炸了,恨不得出biubiubiu 二一三连招。

安琪拉:  因为 key.hashCode() 函数调用的是key键值类型自带的哈希函数,返回int型散列值。int值范围为-2147483648~2147483647,前后加起来大概40亿的映射空间。只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个40亿长度的数组,内存是放不下的。你想,如果HashMap数组的初始大小才16,用之前需要对数组的长度取模运算,得到的余数才能用来访问数组下标。

源码中模运算就是把散列值和数组长度-1做一个"与"操作,位运算比%运算要快。

bucketIndex = indexFor(hash, table.length);  
static int indexFor(int h, int length) {  
return h & (length-1);  
}

顺便说一下,这也正好解释了为什么HashMap的数组长度要取2的整数幂。因为这样(数组长度-1)正好相当于一个“低位掩码”。“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度16为例,16-1=15。2进制表示是00000000 00000000 00001111。和某散列值做“与”操作如下,结果就是截取了最低的四位值。

10100101 11000100 00100101  
& 00000000 00000000 00001111  
----------------------------------  
  00000000 00000000 00000101    //高位全部归零,只保留末四位

但这时候问题就来了,这样就算我的散列值分布再松散,要是只取最后几位的话,碰撞也会很严重。更要命的是如果散列本身做得不好,分布上成等差数列的漏洞,如果正好让最后几个低位呈现规律性重复,就无比蛋疼。

这时候 hash 函数(“扰动函数”)的价值就体现出来了,说到这里大家应该猜出来了。看下面这个图,

右位移16位,正好是32bit的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。

最后我们来看一下Peter Lawley的一篇专栏文章《An introduction to optimising a hashing strategy》里的的一个实验:他随机选取了352个字符串,在他们散列值完全没有冲突的前提下,对它们做低位掩码,取数组下标。

结果显示,当HashMap数组长度为512的时候(),也就是用掩码取低9位的时候,在没有扰动函数的情况下,发生了103次碰撞,接近30%。而在使用了扰动函数之后只有92次碰撞。碰撞减少了将近10%。看来扰动函数确实还是有功效的。

另外Java1.8相比1.7做了调整,1.7做了四次移位和四次异或,但明显Java 8觉得扰动做一次就够了,做4次的话,多了可能边际效用也不大,所谓为了效率考虑就改成一次了。

下面是1.7的hash代码:

static int hash(int h) {  
    h ^= (h >>> 20) ^ (h >>> 12);  
    return h ^ (h >>> 7) ^ (h >>> 4);  
}

面试官:  看来做过功课,有点料啊!是不是偷偷看了安琪拉的博客公众号, 你刚刚说到1.8对hash函数做了优化,1.8还有别的优化吗?

安琪拉: 1.8还有三点主要的优化:

1.数组+链表改成了数组+链表或红黑树;

2.链表的插入方式从头插法改成了尾插法,简单说就是插入时,如果数组位置上已经有元素,1.7将新元素放到数组中,原始节点作为新节点的后继节点,1.8遍历链表,将元素放置到链表的最后;

3.扩容的时候1.7需要对原数组中的元素进行重新hash定位在新数组的位置,1.8采用更简单的判断逻辑,位置不变或索引+旧容量大小;

4.在插入时,1.7先判断是否需要扩容,再插入,1.8先进行插入,插入完成再判断是否需要扩容; 面试官:  你分别跟我讲讲为什么要做这几点优化;

安琪拉:  【咳咳,果然是连环炮】

1.防止发生hash冲突,链表长度过长,将时间复杂度由O(n)降为O(logn);

2.因为1.7头插法扩容时,头插法会使链表发生反转,多线程环境下会产生环;

A线程在插入节点B,B线程也在插入,遇到容量不够开始扩容,重新hash,放置元素,采用头插法,后遍历到的B节点放入了头部,这样形成了环

1.7的扩容调用transfer代码,如下所示:

void transfer(Entry[] newTable, boolean rehash) {  
  int newCapacity = newTable.length;  
  for (Entry e : table) {  
    while(null != e) {  
      Entry next = e.next;  
      if (rehash) {  
        e.hash = null == e.key ? 0 : hash(e.key);  
      }  
      int i = indexFor(e.hash, newCapacity);  
      e.next = newTable[i]; //A线程如果执行到这一行挂起,B线程开始进行扩容  
      newTable[i] = e;  
      e = next;  
    }  
  }  
}

3.扩容的时候为什么1.8 不用重新hash就可以直接定位原节点在新数据的位置呢?

这是由于扩容是扩大为原数组大小的2倍,用于计算数组位置的掩码仅仅只是高位多了一个1,举个例子:扩容前长度为16,用于计算 (n-1) & hash 的二进制n - 1为0000 1111,

扩容后为32后的二进制就高位多了1,============>为0001 1111。

4.因为是& 运算,1和任何数 & 都是它本身,那就分二种情况,如下图:原数据hashcode高位第4位为0和高位为1的情况;

第四位高位为0,重新hash数值不变,第四位为1,重新hash数值比原来大16(旧数组的容量)

面试官:  那HashMap是线程安全的吗?

安琪拉:  不是,在多线程环境下,1.7 会产生死循环、数据丢失、数据覆盖的问题,1.8 中会有数据覆盖的问题。

以1.8为例,当A线程执行到下面代码第6行判断index位置为空后正好挂起,B线程开始执行第7 行,往index位置的写入节点数据,这时A线程恢复现场,执行赋值操作,就把A线程的数据给覆盖了;

还有第38行++size这个地方也会造成多线程同时扩容等问题。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,  
               boolean evict) {  
  Node[] tab; Node p; int n, i;  
  if ((tab = table) == null || (n = tab.length) == 0)  
    n = (tab = resize()).length;  
  if ((p = tab[i = (n - 1) & hash]) == null)  //多线程执行到这里  
    tab[i] = newNode(hash, key, value, null);  
  else {  
    Node e; K k;  
    if (p.hash == hash &&  
        ((k = p.key) == key || (key != null && key.equals(k))))  
      e = p;  
    else if (p instanceof TreeNode)  
      e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);  
    else {  
      for (int binCount = 0; ; ++binCount) {  
        if ((e = p.next) == null) {  
          p.next = newNode(hash, key, value, null);  
          if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
            treeifyBin(tab, hash);  
          break;  
        }  
        if (e.hash == hash &&  
            ((k = e.key) == key || (key != null && key.equals(k))))  
          break; 
         p = e;  
      }  
    }  
    if (e != null) { // existing mapping for key  
      V oldValue = e.value;  
      if (!onlyIfAbsent || oldValue == null)  
        e.value = value;  
      afterNodeAccess(e);  
      return oldValue;  
    }  
  }  
  ++modCount;  
  if (++size > threshold) // 多个线程走到这,可能重复resize()  
    resize();  
  afterNodeInsertion(evict); 
   return null;  
}

面试官:  那你平常怎么解决这个线程不安全的问题?

安琪拉:  Java中有HashTable、Collections.synchronizedMap、以及ConcurrentHashMap可以实现线程安全的Map。

HashTable是直接在操作方法上加synchronized关键字,锁住整个数组,粒度比较大; Collections.synchronizedMap是使用Collections集合工具的内部类,通过传入Map封装出一个SynchronizedMap对象,内部定义了一个对象锁,方法内通过对象锁实现; ConcurrentHashMap使用分段锁,降低了锁粒度,让并发度大大提高。 面试官:  那你知道ConcurrentHashMap的分段锁的实现原理吗?

安琪拉:  【天啦撸! 俄罗斯套娃,一个套一个】ConcurrentHashMap成员变量使用volatile 修饰,免除了指令重排序,同时保证内存可见性,另外使用CAS操作和synchronized结合实现赋值操作,多线程操作只会锁住当前操作索引的节点。

如下图,线程A锁住A节点所在链表,线程B锁住B节点所在链表,操作互不干涉。HashMap实例分析

面试官:  你前面提到链表转红黑树是链表长度达到阈值,这个阈值是多少?

安琪拉:  阈值是8,红黑树转链表阈值为6

面试官:  为什么是8,不是16,32甚至是7 ?又为什么红黑树转链表的阈值是6,不是8了呢?

安琪拉: 【你去问作者啊!天啦撸,biubiubiu 真想213连招】

因为作者就这么设计的,哦,不对,因为经过计算,在hash函数设计合理的情况下,发生hash碰撞8次的几率为百万分之6,概率说话。。因为8够用了,至于为什么转回来是6,因为如果hash碰撞次数在8附近徘徊,会一直发生链表和红黑树的转化,为了预防这种情况的发生。

面试官:  HashMap内部节点是有序的吗?

安琪拉:  是无序的,根据hash值随机插入

面试官:  那有没有有序的Map?

安琪拉:  LinkedHashMap 和 TreeMap

面试官:  跟我讲讲LinkedHashMap怎么实现有序的?

安琪拉:  LinkedHashMap内部维护了一个单链表,有头尾节点,同时LinkedHashMap节点Entry内部除了继承HashMap的Node属性,还有before 和 after用于标识前置节点和后置节点。可以实现按插入的顺序或访问顺序排序。

/**  
 * The head (eldest) of the doubly linked list.  
*/  
transient LinkedHashMap.Entry head;  
/**  
  * The tail (youngest) of the doubly linked list.  
*/  
transient LinkedHashMap.Entry tail;  
//链接新加入的p节点到链表后端  
private void linkNodeLast(LinkedHashMap.Entry p) {  
  LinkedHashMap.Entry last = tail;  
  tail = p;  
  if (last == null)  
    head = p;  
  else {  
    p.before = last;  
    last.after = p;  
  }  
}  
//LinkedHashMap的节点类  
static class Entry extends HashMap.Node {  
  Entry before, after;  
  Entry(int hash, K key, V value, Node next) {  
    super(hash, key, value, next);  
  }  
}

示例代码:

public static void main(String[] args) {  
    Map map = new LinkedHashMap();  
    map.put("1", "安琪拉");  
    map.put("2", "的");  
    map.put("3", "博客");  
    for(Map.Entry item: map.entrySet()){    System.out.println(item.getKey() + ":" + item.getValue());  
                                                      }
}
//console输出1:安琪拉2:的3:博客

面试官:  跟我讲讲TreeMap怎么实现有序的?

安琪拉:TreeMap是按照Key的自然顺序或者Comprator的顺序进行排序,内部是通过红黑树来实现。所以要么key所属的类实现Comparable接口,或者自定义一个实现了Comparator接口的比较器,传给TreeMap用户key的比较。

以上就是关于“HashMap实例分析”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注编程笔记行业资讯频道。


推荐阅读
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 本题探讨了在大数据结构背景下,如何通过整体二分和CDQ分治等高级算法优化处理复杂的时间序列问题。题目设定包括节点数量、查询次数和权重限制,并详细分析了解决方案中的关键步骤。 ... [详细]
  • 作者:守望者1028链接:https:www.nowcoder.comdiscuss55353来源:牛客网面试高频题:校招过程中参考过牛客诸位大佬的面经,但是具体哪一块是参考谁的我 ... [详细]
  • 深入解析Redis内存对象模型
    本文详细介绍了Redis内存对象模型的关键知识点,包括内存统计、内存分配、数据存储细节及优化策略。通过实际案例和专业分析,帮助读者全面理解Redis内存管理机制。 ... [详细]
  • 汇编语言等号伪指令解析:探究其陡峭的学习曲线
    汇编语言以其独特的特性和复杂的语法结构,一直被认为是编程领域中学习难度较高的语言之一。本文将探讨汇编语言中的等号伪指令及其对初学者带来的挑战,并结合社区反馈分析其学习曲线。 ... [详细]
  • Codeforces Round #566 (Div. 2) A~F个人题解
    Dashboard-CodeforcesRound#566(Div.2)-CodeforcesA.FillingShapes题意:给你一个的表格,你 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 在 Flutter 开发过程中,开发者经常会遇到 Widget 构造函数中的可选参数 Key。对于初学者来说,理解 Key 的作用和使用场景可能是一个挑战。本文将详细探讨 Key 的概念及其应用场景,并通过实例帮助你更好地掌握这一重要工具。 ... [详细]
  • 网易严选Java开发面试:MySQL索引深度解析
    本文详细记录了网易严选Java开发岗位的面试经验,特别针对MySQL索引相关的技术问题进行了深入探讨。通过本文,读者可以了解面试官常问的索引问题及其背后的原理。 ... [详细]
  • 本实验主要探讨了二叉排序树(BST)的基本操作,包括创建、查找和删除节点。通过具体实例和代码实现,详细介绍了如何使用递归和非递归方法进行关键字查找,并展示了删除特定节点后的树结构变化。 ... [详细]
  • 本教程涵盖OpenGL基础操作及直线光栅化技术,包括点的绘制、简单图形绘制、直线绘制以及DDA和中点画线算法。通过逐步实践,帮助读者掌握OpenGL的基本使用方法。 ... [详细]
  • 深入理解Java中的Collection接口与Collections工具类
    本文详细解析了Java中Collection接口和Collections工具类的区别与联系,帮助开发者更好地理解和使用这两个核心组件。 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
  • 本文介绍如何使用 Android 的 Canvas 和 View 组件创建一个简单的绘图板应用程序,支持触摸绘画和保存图片功能。 ... [详细]
  • 本文介绍了如何在多线程环境中实现异步任务的事务控制,确保任务执行的一致性和可靠性。通过使用计数器和异常标记字段,系统能够准确判断所有异步线程的执行结果,并根据结果决定是否回滚或提交事务。 ... [详细]
author-avatar
强子
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有