热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop——Hive简介和环境配置

一、Hive的简介和配置1.简介Hive是构建在Hadoop之上的数据操作平台lHive是一个SQL解析引擎,它将SQL转译成MapReduce作业,并
一、Hive的简介和配置

  1.简介

    Hive是构建在Hadoop之上的数据操作平台l Hive是一个SQL解析引擎,它将SQL转译成MapReduce作业,并在Hadoop上运行Hive表是HDFS的一个文件目录,一个表名对应一个目录名,如果存在分区表的话,则分区值对应子目录名。

  2.Hive的体系结构

    Hive作为Hadoop的数据仓库处理工具,它所有的数据都存储在Hadoop兼容的文件系统中。Hive在加载数据的过程中不会对数据进行任何的修改,只是将数据移动到HDFS中Hive设置的指定目录下,因此,Hive不支持对数据的改写和添加,所有的数据都是在加载的时候设定的,Hive的设计特点如下:

        1.支持索引,加快数据查询

         2.不同的存储类型,例如:纯文本文件、HBase中的文件

         3. 将元数据保存在关系型数据库中,减少了在查询中执行语义的检查时间

         4. 可以直接使用存储在Hadoop文件系统中的数据

         5. 内置大量的用户UDF来操作时间,字符串和其他数据挖掘工具,支持用户扩展UDF来完成内置函数无法完成的操作

         6.类SQL的查询方式,将SQL查询转换为MapReduce的job在Hadoop集群上执行

         7.编码与Hadoop同样采用UTF-8

                                 

     

  用户接口:

             ① CLI:CLI启动的时候,会同时启动一个Hive副本

             ② JDBC客户端:封装了Thrift,Java应用程序可以通过指定的主机和端口 连接到在另一个进程中的Hive服务

             ③ WEB接口:通过浏览器访问Hive服务

     Thrift服务器:

            ① 基于Socket通讯,支持跨语言。Hive的Thrift服务简化了在多编程语言 中运行Hive命令,绑定支持C++,JAVA,PHP和Ruby语言。

     解析器:

             ① 编译器:完成HQL语句的从词法分析、语法分析、编译优化以及执行计   划的生成。

          ② 优化器:是一个演化组件,当前它的规则是:列修剪,谓词下压

             ③ 执行器:会顺序执行所有的Job。如果Task链不存在依赖关系,可以采取   并发方式执行Job

     元数据库:

           ① Hive的数据由两部分组成:数据文件和元数据。元数据用于存放Hive库的基   础信息,它存储在关系型数据库中,如MySQL、Derby。元数据包括:数据库信息、表       的名字、表的列和分区及其属性,表的属性,表的数据所在目录等。

      Hadoop:

          ① Hive的数据文件存储在HDFS中,大部分的查询由MapReduce构成,不过对   于包含*的查询,比如select * from lbl不会生成MapReduce作业。

  3.Hive的运行机制

        ① 用户通过用户接口连接Hive,发布Hive SQL

              ② Hive解析查询并制定查询计划

              ③ Hive将查询转换为MapReduce作业

              ④ Hive在Hadoop上执行MapReduce作业

  4.Hive的优势   

    1. 解决了传统关系数据库在大数据处理上的瓶颈,适合大数据的批量处理

    2.充分利用集群的CPU计算资源、存储资源,实现并行计算

    3.Hive支持标准SQL语法,免去了编写MR程序的过程。提升开发效率

    4.具有良好的扩展性,拓展功能很方便

  5.Hive的缺点  

    1.Hive的HQL表达能力有限:有些复杂运算HQL不易表达

    2.Hive的效率低:Hive自动生成MR作业,通常不够智能;HQL调优困难,粒度较粗;可控性差

    3.针对Hive运行效率低下等问题,促使人们去寻找一种更快,更具交互性的分析框架。SparkSQL的出现则有效的提高了Sql在Hadoop上的分析效率

  6.Hive的配置(Lin集群)

   (1).Hive配置前的准备: 完整的hadoop集群; ssh免密登录;安装mysql数据库;安装java

    (2).下载Hive的tar包 下载地址:http://mirror.bit.edu.cn/apache/hive/

    (3).上传Hive到Linux系统上 #将压缩包解压到对应目录  tar -zxvf /usr/localhost/apache-hive-2.3.5-bin.tar.gz

     (4).#将解压的目录重命名为hive    mv apache-hive-2.3.5-bin/ hive     

    (5).#设置hive的环境的变量   vim /etc/profile

    (6).#编辑内容如下(在profile文件)

      export HIVE_HOME=/usr/local/hive  (这个路径是自己将解压后的包解压后的位置)

      export PATH=$PATH:$HIVE_HOME/bin

    (7.)#刷新文件(保存后)   source /etc/profile
    (8).#检查hive版本     hive --version
    (9).Hive的配置
      #切换到hive的配置文件目录
        cd /usr/local/hive/conf/
      #以模板复制一个hive-site.xml
        cp hive-default.xml.template hive-site.xml
      #编辑hive-site.xml文件
        vim hive-site.xml
      #将以下内容插入到hive-site.xml文件,其他内容替换
        
          javax.jdo.option.ConnectionUserName
          root
        

        
          javax.jdo.option.ConnectionPassword
          123456
        

        
          javax.jdo.option.ConnectionURL
          jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNotExist=true
        

        
          javax.jdo.option.ConnectionDriverName
          com.mysql.jdbc.Driver
        

        
          
          hive.metastore.schema.verification
          false
        

    (9).接下来将mysql的数据库驱动包放置到hive下的lib目录中
        初始化Hive元数据
          schematool -dbType mysql -initSchema

    (10).beeline连接操作  (找到hadoop的路径在相应的文件下修改以下下文件)

          hdfs-site.xml文件
      
        dfs.webhdfs.enabled
        true
      

        core-site.xml文件
      
        hadoop.proxyuser.root.hosts
        *
      

      
        hadoop.proxyuser.root.groups
        *
      

   (11).使用scp命令发送到slave1与slave2两台节点上,

      scp hdfs-site.xml core-site.xml root@slave1:/usr/local/hadoop-2.8.0/etc/hadoop/
      scp hdfs-site.xml core-site.xml root@slave2:/usr/local/hadoop-2.8.0/etc/hadoop/
   (12).hdfs namenode -format 重启服务 格式化namenode节点 (利用dbvis操作hive)
      ------------------------hiveserver2打开服务
        hiveserver2
      ------------------------beeline连接
        beeline
        !connect jdbc:hive2://master:10000
        ------------------------安装dbvis

   (13).注意事项

      在格式化hadoop集群时 从起hadoop会发现dataName没有启动成功

      解决办法: 进入hadoop的安装路径 找到 etc/hadoop 查看hadoop的tmp文件路径然后进入

                  

       进入红色圈中的文件夹

     

       复制标红的哪一行代码 到从节点的相同目录文件下 覆盖原有的一行

     

      从起集群即可解决

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

转:https://www.cnblogs.com/wuxuewei/p/11465825.html



推荐阅读
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 深入理解 SQL 视图、存储过程与事务
    本文详细介绍了SQL中的视图、存储过程和事务的概念及应用。视图为用户提供了一种灵活的数据查询方式,存储过程则封装了复杂的SQL逻辑,而事务确保了数据库操作的完整性和一致性。 ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • MySQL索引详解与优化
    本文深入探讨了MySQL中的索引机制,包括索引的基本概念、优势与劣势、分类及其实现原理,并详细介绍了索引的使用场景和优化技巧。通过具体示例,帮助读者更好地理解和应用索引以提升数据库性能。 ... [详细]
  • 本文深入探讨了SQL数据库中常见的面试问题,包括如何获取自增字段的当前值、防止SQL注入的方法、游标的作用与使用、索引的形式及其优缺点,以及事务和存储过程的概念。通过详细的解答和示例,帮助读者更好地理解和应对这些技术问题。 ... [详细]
  • 使用C#开发SQL Server存储过程的指南
    本文介绍如何利用C#在SQL Server中创建存储过程,涵盖背景、步骤和应用场景,旨在帮助开发者更好地理解和应用这一技术。 ... [详细]
  • MySQL缓存机制深度解析
    本文详细探讨了MySQL的缓存机制,包括主从复制、读写分离以及缓存同步策略等内容。通过理解这些概念和技术,读者可以更好地优化数据库性能。 ... [详细]
  • 根据最新发布的《互联网人才趋势报告》,尽管大量IT从业者已转向Python开发,但随着人工智能和大数据领域的迅猛发展,仍存在巨大的人才缺口。本文将详细介绍如何使用Python编写一个简单的爬虫程序,并提供完整的代码示例。 ... [详细]
  • 本文详细介绍了 MySQL 中 LAST_INSERT_ID() 函数的使用方法及其工作原理,包括如何获取最后一个插入记录的自增 ID、多行插入时的行为以及在不同客户端环境下的表现。 ... [详细]
  • 本文详细探讨了JDBC(Java数据库连接)的内部机制,重点分析其作为服务提供者接口(SPI)框架的应用。通过类图和代码示例,展示了JDBC如何注册驱动程序、建立数据库连接以及执行SQL查询的过程。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 本文详细介绍如何使用 Apache Spark 执行基本任务,包括启动 Spark Shell、运行示例程序以及编写简单的 WordCount 程序。同时提供了参数配置的注意事项和优化建议。 ... [详细]
  • 深入解析:主流开源分布式文件系统综述
    本文详细探讨了几款主流的开源分布式文件系统,包括HDFS、MooseFS、Lustre、GlusterFS和CephFS,重点分析了它们的元数据管理和数据一致性机制,旨在为读者提供深入的技术见解。 ... [详细]
  • 本文介绍了Hive作为基于Hadoop的数据仓库工具的核心概念,包括其基本功能、使用理由、特点以及与Hadoop的关系。同时,文章还探讨了Hive相较于传统关系型数据库的不同之处,并展望了Hive的发展前景。 ... [详细]
  • 本文详细介绍了在Hive中创建表的基本语法,包括临时表、外部表的创建方法,以及如何设置表的各种属性和约束条件。 ... [详细]
author-avatar
蟹子的宿命
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有