热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop(CDH4发行版)集群部署(部署脚本,namenode高可用,hadoop管理)

前言折腾了一段时间hadoop的部署管理,写下此系列博客记录一下。为了避免各位做部署这种重复性的劳动,我已经把部署的步骤写成脚本,各位只需要按着本文把脚本执行完,整个环境基本就部署
前言

 折腾了一段时间hadoop的部署管理,写下此系列博客记录一下。

 为了避免各位做部署这种重复性的劳动,我已经把部署的步骤写成脚本,各位只需要按着本文把脚本执行完,整个环境基本就部署完了。部署的脚本我放在了开源中国的git仓库里(http://git.oschina.net/snake1361222/hadoop_scripts)。

 本文的所有部署都基于cloudera公司的CDH4,CDH4是cloudera公司包装好的hadoop生态圈一系列yum包,把CDH4放到自己的yum仓库中,能极大的提高hadoop环境部署的简易性。

 本文的部署过程中涵盖了namenode的HA实现,hadoop管理的解决方案(hadoop配置文件的同步,快速部署脚本等)。

环境准备

一共用5台机器作为硬件环境,全都是centos 6.4

  • namenode & resourcemanager 主服务器: 192.168.1.1

  • namenode & resourcemanager 备服务器: 192.168.1.2

  • datanode & nodemanager 服务器: 192.168.1.100 192.168.1.101 192.168.1.102

  • zookeeper 服务器集群(用于namenode 高可用的自动切换): 192.168.1.100 192.168.1.101

  • jobhistory 服务器(用于记录mapreduce的日志): 192.168.1.1

  • 用于namenode HA的NFS: 192.168.1.100

环境部署

一、加入CDH4的YUM仓库

1.最好的办法是把cdh4的包放到自建的yum仓库中,如何自建yum仓库请看 自建YUM仓库

2.如果不想自建yum仓库,在所有的hadoop机器执行以下操作加入cdn4的yum仓库

wget http://archive.cloudera.com/cdh4/one-click-install/redhat/6/x86_64/cloudera-cdh-4-0.x86_64.rpm
sudo yum --nogpgcheck localinstall cloudera-cdh-4-0.x86_64.rpm

二、创建用于namenode HA的NFS服务器

1.登录192.168.1.100,执行以下脚本 createNFS.sh

#!/bin/bashyum -y install rpc-bind nfs-utilsmkdir -p /data/nn_ha/echo "/data/nn_ha  *(rw,root_squash,all_squash,sync)" >> /etc/exports/etc/init.d/rpcbind start/etc/init.d/nfs  startchkconfig  --level 234 rpcbind   onchkconfig  -level 234 nfs  on

三、Hadoop Namenode & resourcemanager 主服务器 环境部署

1.登录192.168.1.1,创建脚本目录,把脚本从git仓库复制下来


yum Cy install gitmkdir Cp /opt/cd /opt/git clone http://git.oschina.net/snake1361222/hadoop_scripts.git/etc/init.d/iptables stop

2.修改hostname

sh /opt/hadoop_scripts/deploy/AddHostname.sh

3.修改部署脚本的配置文件

vim /opt/kingsoft/hadoop_scripts/deploy/config#添加master服务器的地址,也就是namenode主服务器master="192.168.1.1"#添加nfs服务器地址nfsserver="192.168.1.100"

4.编辑hosts文件(此文件会同步到hadoop集群所有机器)

vim /opt/hadoop_scripts/share_data/resolv_host127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4::1         localhost localhost.localdomain localhost6 localhost6.localdomain6192.168.1.1 nn.dg.hadoop.cn192.168.1.2 nn2.dg.hadoop.cn192.168.1.100 dn100.dg.hadoop.cn192.168.1.101 dn101.dg.hadoop.cn192.168.1.102 dn102.dg.hadoop.cn

5.执行部署脚本CreateNamenode.sh

sh /opt/hadoop_scripts/deploy/CreateNamenode.sh

6.搭建saltstack master

PS:类似于puppet的服务器管理开源工具,比较轻量,在这里用于管理hadoop集群,调度datanode,关于saltstack的详细请看 SaltStack部署与使用

a.安装

yum -y install salt salt-master

b.修改配置文件`/etc/salt/master`,下面标志的是需要修改的项

修改监听IP:interface: 0.0.0.0多线程池:worker_threads: 5开启任务缓存:(官方描叙开启缓存能承载5000minion)job_cache开启自动认证:auto_accept: True

c.开启服务

/etc/init.d/salt-master startchkconfig  salt-master on

7.部署过程中已经把我的sample配置复制过去了,所以只需要修改部分配置文件

a. /etc/hadoop/conf/hdfs-site.xml (其实就是按实际修改主机名地址)

  dfs.namenode.rpc-address.mycluster.ns1  nn.dg.hadoop.cn:8020  定义ns1的rpc地址  dfs.namenode.rpc-address.mycluster.ns2  nn2.dg.hadoop.cn:8020  定义ns2的rpc地址    ha.zookeeper.quorum    dn100.dg.hadoop.cn:2181,dn101.dg.hadoop.cn:2181,dn102.dg.hadoop.cn:2181,    指定用于HA的ZooKeeper集群机器列表

b. mapred-site.xml

 mapreduce.jobhistory.address nn.dg.hadoop.cn:10020 mapreduce.jobhistory.webapp.address nn.dg.hadoop.cn:19888


c. yarn-site.xml

  yarn.resourcemanager.resource-tracker.address  nn.dg.hadoop.cn:8031  yarn.resourcemanager.address  nn.dg.hadoop.cn:8032  yarn.resourcemanager.scheduler.address  nn.dg.hadoop.cn:8030  yarn.resourcemanager.admin.address  nn.dg.hadoop.cn:8033


三、Hadoop Namenode & resourcemanager 备服务器 环境部署

1.登录192.168.1.2,创建脚本目录,从主服务器把脚本同步过来

/etc/init.d/iptables stopmkdir Cp /opt/hadoop_scriptsrsync Cavz 192.168.1.1::hadoop_s   /opt/hadoop_scripts

2.执行部署脚本CreateNamenode.sh

sh /opt/hadoop_scripts/deploy/CreateNamenode.sh

3.同步hadoop配置文件

rsync Cavz 192.168.1.1::hadoop_conf  /etc/hadoop/conf

4.部署saltstack客户端

sh /opt/hadoop_scripts/deploy/salt_minion.sh

四、zookeeper服务器集群部署

zookeeper是一个开源分布式服务,在这里用于namenode 的auto fail over功能。

1.安装

yum install zookeeper zookeeper-server

2.修改配置文件/etc/zookeeper/conf/zoo.cfg

maxClientCnxns=50# The number of milliseconds of each ticktickTime=2000# The number of ticks that the initial# synchronization phase can takeinitLimit=10# The number of ticks that can pass between# sending a request and getting an acknowledgementsyncLimit=5# the directory where the snapshot is stored.dataDir=/var/lib/zookeeper# the port at which the clients will cOnnectclientPort=2181#这里指定zookeeper集群内的所有机器,此配置集群内机器都是一样的server.1=dn100.dg.hadoop.cn :2888:3888server.2=dn101.dg.hadoop.cn:2888:3888

3.指定当前机器的id,并开启服务

#譬如当前机器是192.168.1.100(dn100.dg.hadoop.cn),它是server.1,id是1,SO:echo "1" >  /var/lib/zookeeper/myidchown -R zookeeper.zookeeper /var/lib/zookeeper/service zookeeper-server init/etc/init.d/zookeeper-server startchkconfig zookeeper-server on#如此类推,部署192.168.1.101

五、datanode & nodemanager 服务器部署

1.登录datanode机器,创建脚本目录,从主服务器把脚本同步过来

/etc/init.d/iptables stopmkdir Cp /opt/hadoop_scriptsrsync Cavz 192.168.1.1::hadoop_s   /opt/hadoop_scripts

2.修改hostname,执行部署脚本 CreateDatanode.sh

sh /opt/hadoop_scripts/deploy/AddHostname.shsh /opt/hadoop_scripts/deploy/CreateDatanode.sh
集群初始化

到这里,hadoop集群的环境已部署完毕,现在开始初始化集群

一、namenode的HA高可用初始化

1.在namenode主服务器(192.168.1.1)执行zookeeper的failover功能格式化

sudo Cu hdfs hdfs zkfc CformatZK

2.把zookeeper集群服务启动(192.168.1.100  192.168.1.101 )

/etc/init.d/zookeeper-server start

3.把namenode主备服务器的zkfc服务起来(192.168.1.1  192.168.1.2)

/etc/init.d/hadoop-hdfs-zkfc start

4.在namenode主服务器(192.168.1.1)格式化hdfs

#确保是用hdfs用户格式化sudo -u hdfs hadoop namenode Cformat

5.第一次搭建namenode高可用,需要把name.dir下面的数据复制到namenode备服务器(此坑花了好多时间)

a.在主服务器(192.168.1.1)执行

tar -zcvPf /tmp/namedir.tar.gz /data/hadoop/dfs/name/nc -l 9999 
 

b.在备服务器(192.168.1.2)执行

wget 192.168.1.1:9999 -O /tmp/namedir.tar.gztar -zxvPf /tmp/namedir.tar.gz

6.主从服务都启动

/etc/init.d/hadoop-hdfs-namenode start/etc/init.d/hadoop-yarn-resourcemanager start

7.查看hdfs的web界面

http://192.168.1.1:9080http://192.168.1.2:9080#如果在web界面看到两个namenode都是backup状态,那就是auto fail over配置不成功#查看zkfc日志(/var/log/hadoop-hdfs/hadoop-hdfs-zkfc-nn.dg.s.kingsoft.net.log)#查看zookeeper集群的日志(/var/log/zookeeper/zookeeper.log)

8.现在可以尝试关闭namenode主服务,看是否能主从切换

二、hdfs集群开启

到这里,所有hadoop部署已完成,现在开始把集群启动,验证效果

1.把所有datanode服务器启动

#还记得之前搭建的saltstack管理工具不,现在开始发挥它的作用,登录saltstack master(192.168.1.1)执行salt -v "dn*" cmd.run "/etc/init.d/hadoop-hdfs-datanode start"

2.查看hdfs web界面,看是否都成为live nodes

3.如果没有问题,现在可以尝试hdfs操作

#创建一个tmp目录sudo -u hdfs hdfs dfs -mkdir /tmp#创建一个10G大小的空文件,计算它的MD5值,并放入hdfsdd if=/dev/zero of=/data/test_10G_file bs=1G count=10md5sum /data/test_10G_filesudo -u hdfs hdfs dfs -put /data/test_10G_file  /tmpsudo -u hdfs hdfs dfs -ls /tmp#现在可以尝试关闭一台datanode,然后把刚才的测试文件拉取出来,再算一次MD5看是否一样sudo -u hdfs hdfs dfs -get /tmp/test_10G_file /tmp/md5sum /tmp/test_10G_file

三、yarn集群开启

hadoop除了hdfs用于大数据的分布式存储,还有更重要的组件,分布式计算(mapreduce)。现在我们来把mapreducev2 yarn集群启动

1.在主服务器把resourcemanager服务起来(192.168.1.1)

/etc/init.d/hadoop-yarn-resourcemanager start

2.把所有nodemanager服务启动

#还是登陆saltstack master,执行salt -v "dn*" cmd.run "/etc/init.d/hadoop-yarn-nodemanager start"

3.查看yarn 任务追踪界面(http://192.168.1.1:9081/),看是否所有nodes都已加入

4.hadoop自带有基准测试的mapreduce实例,我们利用它来测试yarn环境是否正常

#TestDFSIO测试HDFS的读写性能,写10个文件,每个文件1G.su hdfs -hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-2.0.0-cdh4.2.1-tests.jar TestDFSIO  -write -nrFiles 10 -fileSize 1000#Sort测试MapReduce##向random-data目录输出数据hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar randomwriter  random-data##运行sort程序hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar sort random-data sorted-data##验证sorted-data 文件是否排好序hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-2.0.0-cdh4.2.1-tests.jar testmapredsort -sortInput random-data \-sortOutput sorted-data
Hadoop集群的管理

一、datanode & nodemanager 节点加入

1.修改hosts表,譬如有节点192.168.1.103需要加入

vim /opt/hadoop_scripts/share_data/resolv_host127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4::1         localhost localhost.localdomain localhost6 localhost6.localdomain6192.168.1.1 nn.dg.hadoop.cn192.168.1.2 nn2.dg.hadoop.cn192.168.1.100 dn100.dg.hadoop.cn192.168.1.101 dn101.dg.hadoop.cn192.168.1.102 dn102.dg.hadoop.cn192.168.1.103 dn103.dg.hadoop.cn

2.修改hostname,同步脚本目录,并执行部署

mkdir Cp /opt/hadoop_scriptsrsync Cavz 192.168.1.1::hadoop_s   /opt/hadoop_scriptssh /opt/hadoop_scripts/deploy/CreateDatanode.shsh /opt/hadoop_scripts/deploy/AddHostname.sh


3.开启服务

/etc/init.d/hadoop-hdfs-datanode start/etc/init.d/hadoop-yarn-nodemanager start

二、修改hadoop配置文件

一般在一个hadoop集群中维护一份hadoop配置,这份hadoop配置需要分发到集群中各个成员。这里的做法是 salt + rsync

#修改namenode主服务器的hadoop配置文件  /etc/hadoop/conf/,然后执行以下命令同步到集群中所有成员sync_h_conf#脚本目录也是需要维护的,譬如hosts文件/opt/hadoop_scripts/share_data/resolv_host,修改后执行以下命令同步到集群中所有成员sync_h_script#其实这两个命令是我自己定义的salt命令的别名,查看这里/opt/hadoop_scripts/profile.d/hadoop.sh

三、监控

比较普遍的方案是,ganglia和nagios监控,ganglia收集大量度量,以图形化程序,nagios在某度量超出阀值后报警.ganglia监控以后补充一下文档

其实,hadoop自带有接口提供我们自己写监控程序,而且这个接口还是比较简单,通过这样便可以访问http://192.168.1.1:9080/jmx,返回值是JSON格式,其中的内容也非常详细。但是每次查询都返回一大串的JSON也是浪费,其实接口还提供更新详细的查询  譬如我只想查找系统信息,可以这样调用接口 http://192.168.1.1:9080/jmx?qry=java.lang:type=OperatingSystem 。qry参考后跟的就是整个JSON的“name”这个key的值


总结

在折腾hadoop集群的部署是还是遇到了很多坑,打算下篇写自己所遭遇的问题。通过本文部署遇到问题的可以联系一下我,互相交流一下。QQ:83766787。当然也欢迎大家一起修改部署的脚本,git地址是http://git.oschina.net/snake1361222/hadoop_scripts

本文出自 “lxcong的运维技术” 博客,请务必保留此出处http://lxcong.blog.51cto.com/7485244/1241004


推荐阅读
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 深入解析BookKeeper的设计与应用场景
    本文介绍了由Yahoo在2009年开发并于2011年开源的BookKeeper技术。BookKeeper是一种高效且可靠的日志流存储解决方案,广泛应用于需要高性能和强数据持久性的场景。 ... [详细]
  • 深入解析:主流开源分布式文件系统综述
    本文详细探讨了几款主流的开源分布式文件系统,包括HDFS、MooseFS、Lustre、GlusterFS和CephFS,重点分析了它们的元数据管理和数据一致性机制,旨在为读者提供深入的技术见解。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 全面解析运维监控:白盒与黑盒监控及四大黄金指标
    本文深入探讨了白盒和黑盒监控的概念,以及它们在系统监控中的应用。通过详细分析基础监控和业务监控的不同采集方法,结合四个黄金指标的解读,帮助读者更好地理解和实施有效的监控策略。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 本文探讨了使用Python实现监控信息收集的方法,涵盖从基础的日志记录到复杂的系统运维解决方案,旨在帮助开发者和运维人员提升工作效率。 ... [详细]
  • 大数据领域的职业路径与角色解析
    本文将深入探讨大数据领域的各种职业和工作角色,帮助读者全面了解大数据行业的需求、市场趋势,以及从入门到高级专业人士的职业发展路径。文章还将详细介绍不同公司对大数据人才的需求,并解析各岗位的具体职责、所需技能和经验。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 我们在之前的文章中已经初步介绍了Cloudera。hadoop基础----hadoop实战(零)-----hadoop的平台版本选择从版本选择这篇文章中我们了解到除了hadoop官方版本外很多 ... [详细]
  • 作者同类文章X转自:http:www.aboutyun.comthread-7949-1-1.html问题导读:1.什么是flume? ... [详细]
  • 使用clouderaquickstartvm无配置快速部署Hadoop应用
    http:zzj270919.blog.163.comblogstatic68997776201522561659999目录:通过CDH网站下载cloudera-vm ... [详细]
  • 本文详细分析了Hive在启动过程中遇到的权限拒绝错误,并提供了多种解决方案,包括调整文件权限、用户组设置以及环境变量配置等。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • 深入解析:存储技术的演变与发展
    本文探讨了从单机文件系统到分布式文件系统的存储技术发展过程,详细解释了各种存储模型及其特点。 ... [详细]
author-avatar
Duanzd09
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有