热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

Hadoop入门_Hadoop入门之hdfs

篇首语:本文由编程笔记#小编为大家整理,主要介绍了Hadoop入门之hdfs相关的知识,希望对你有一定的参考价值。   

篇首语:本文由编程笔记#小编为大家整理,主要介绍了Hadoop入门之hdfs相关的知识,希望对你有一定的参考价值。


                                                    大数据技术开篇之Hadoop入门【hdfs】

    学习都是从了解到熟悉的过程,而学习一项新的技术的时候都是从这个技术是什么?可以干什么?怎么用?如何优化?这几点开始。今天这篇文章分为两个部分。一、hadoop概述  二、hadoop核心技术之一的hdfs的讲解。

【hadoop概述】

一、hadoop是什么?

          Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。

  简单概况就是hadoop是一个分布式系统的基础架构,通过分布式来进行高速运算和存储。

二、用来干什么?

  主要用来解决海量数据存储和海量数据运算的问题

三、当前版本

   Apach 版本:主要用于自己学习研究方面,免费开源版本

   Cloudera:收费版本,企业版本。目前公司商用化最多的版本。

     Hortonworks:商业版本,这个版本的优势在于参考文档相对详尽,学习起来比较方便

四、hadoop组成

    commons:辅助工具
    hdfs:一个分布式高吞吐量,高可靠的分布式文件系统
    mapreduce 一个分布式离线计算框架
    yarn:作业调度和资源管理的框架。

五、集群模式

单节点模式,伪集群,完整集群。三个模式

                        HDFS 学习

一、hdfs是什么?

    hdfs一个分布式高吞吐量,高可靠的分布式文件系统。

二、hdfs优缺点:

 优点:
    【1】高容错性,数据自动保存多个副本,一个副本丢失后可以自动恢复
    【2】适合大数据的处理
    数据可以达到gb,Tb,pb级别,文件处理可以达到百万以上的规模
    【3】可以构建在廉价的机器上面,通过多副本来实现可靠性

  缺点:
    【1】不适合低延时数据访问,比如毫秒级别做不到
    【2】无法高效对大量小文件进行存储
    【3】不支持文件的随机修改,仅支持文件的追加

三、hdfs的组成:

  Client:客户端
       【1】文件切分。文件上传时将文件切成一个个block块
    【2】与NameNode交互,获取文件的位置信息
    【3】与DataNode交互,读取或写入数据
    【4】client提供一些命令来管理Hdfs,比如启动或者关闭
    【5】client可以通过命令来访问Hdfs
  NameNode就是Master,它是一个主管、管理者
    【1】管理数据块的原信息
    【2】配置副本策略
    【3】处理客户端请求
  DateNode
    【1】存储实际的数据块
    【2】执行数据块的读写操作
  econdaryNameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务
    【1】辅助NameNode,分担其工作量
    【2】定期合并Fsimage和Edits,并推送给NameNode;
    【3】在紧急情况下,可辅助恢复NameNode。

四、hdfs文件写入流程

                                                        技术图片

 

    

    (1) 客户端通过Distributed FileSystem模块NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

    (2) NameNode返回是否可以上传。

    (3) 客户端请求第一个 block上传到哪几个datanode服务器上。

    (4) NameNode返回3datanode节点,分别为dn1、dn2、dn3。

    (5) 客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。

    (6) dn1、dn2、dn3逐级应答客户端。

    (7) 客户端开始往dn1上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,dn1收到一个packet就会传给dn2,dn2传给dn3; 

    (8) 当一个block传输完成之后,客户端再次请求NameNode上传第二个block的服务器。(重复执行3-7步)。

五、hdfs 读文件流程

             技术图片

 

 

 

    (1) 客户端通过Distributed FileSystemNameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。

 

    (2) 挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据

 

    (3) DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以packet为单位来做校验)。

 

    (4) 客户端以packet为单位接收,先在本地缓存,然后写入目标文件。

六、NN与2NN的工作机制

 

        技术图片

 

 

    

    (1) 第一阶段:NameNode启动

 

      a) 第一次启动NameNode格式化后创建fsimage和edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。

 

      b) 客户端对元数据进行增删改的请求

 

      c) NameNode记录操作日志,更新滚动日志

 

      d) NameNode在内存中对数据进行增删改查

 

    (2) 第二阶段:Secondary NameNode工作

 

      a) Secondary NameNode询问NameNode是否需要checkpoint直接带回NameNode是否检查结果。

 

      b) Secondary NameNode请求执行checkpoint。

 

      c) NameNode滚动正在写的edits日志

 

      d) 将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。

 

      e) Secondary NameNode加载编辑日志和镜像文件到内存,并合并。

 

      f) 生成新的镜像文件fsimage.chkpoint。

 

      g) 拷贝fsimage.chkpointNameNode

 

      h) NameNodefsimage.chkpoint重新命名成fsimage。

 

NN2NN工作机制详解:

fsimagenamenode内存中元数据序列化后形成的文件。

edits:记录客户端更新元数据信息的每一步操作(可通过Edits运算出元数据)。

namenode启动时,先滚动edits并生成一个空的edits.inprogress,然后加载edits(归档后的)和fsimage(最新的)到内存中,此时namenode内存就持有最新的元数据信息。client开始对namenode发送元数据的增删改查的请求,这些请求的操作首先会被记录在edits.inprogress中(查询元数据的操作不会被记录在edits中,因为查询操作不会更改元数据信息),如果此时namenode挂掉,重启后会从edits中读取元数据的信息。然后,namenode会在内存中执行元数据的增删改查的操作。

由于edits中记录的操作会越来越多,edits文件会越来越大,导致namenode在启动加载edits时会很慢,所以需要对editsfsimage进行合并(所谓合并,就是将editsfsimage加载到内存中,照着edits中的操作一步步执行,最终形成新的fsimage)。Secondarynamenode:帮助namenode进行editsfsimage的合并工作。

secondarynamenode首先会询问namenode是否需要checkpoint(触发checkpoint需要满足两个条件中的任意一个,定时时间到和edits中数据写满了)直接带回namenode是否检查结果。secondarynamenode执行checkpoint操作,首先会让namenode滚动edits并生成一个空的edits.inprogress,滚动edits的目的是给edits打个标记,以后所有新的操作都写入edits.inprogress,其他未合并的editsfsimage会拷贝到secondarynamenode的本地,然后将拷贝的editsfsimage加载到内存中进行合并,生成fsimage.chkpoint,然后将fsimage.chkpoint拷贝给namenode,重命名为fsimage后替换掉原来的fsimagenamenode在启动时就只需要加载之前未合并的editsfsimage即可,因为合并过的edits中的元数据信息已经被记录在fsimage中。

 

 

六、DataName工作机制

            技术图片

 

 

 

    (1) 一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据校验和,以及时间戳

    (2) DataNode启动后向NameNode注册,通过后,周期性(1小时NameNode上报所有的块信息。

    (3) 心跳是每3一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。

 

 

今天的hdfs的分享就到这里了,下次会分享MapReduce和Yarn的知识。每天进步一点点,大家一起加油。

 

 

 

 

 

 

 

 

 

 

 


推荐阅读
  • 深入解析Spark核心架构与部署策略
    本文详细探讨了Spark的核心架构,包括其运行机制、任务调度和内存管理等方面,以及四种主要的部署模式:Standalone、Apache Mesos、Hadoop YARN和Kubernetes。通过本文,读者可以深入了解Spark的工作原理及其在不同环境下的部署方式。 ... [详细]
  • 深入浅出:Hadoop架构详解
    Hadoop作为大数据处理的核心技术,包含了一系列组件如HDFS(分布式文件系统)、YARN(资源管理框架)和MapReduce(并行计算模型)。本文将通过实例解析Hadoop的工作原理及其优势。 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • HBase运维工具全解析
    本文深入探讨了HBase常用的运维工具,详细介绍了每种工具的功能、使用场景及操作示例。对于HBase的开发人员和运维工程师来说,这些工具是日常管理和故障排查的重要手段。 ... [详细]
  • Hadoop发行版本选择指南:技术解析与应用实践
    本文详细介绍了Hadoop的不同发行版本及其特点,帮助读者根据实际需求选择最合适的Hadoop版本。内容涵盖Apache Hadoop、Cloudera CDH等主流版本的特性及应用场景。 ... [详细]
  • 深入解析Hadoop的核心组件与工作原理
    本文详细介绍了Hadoop的三大核心组件:分布式文件系统HDFS、资源管理器YARN和分布式计算框架MapReduce。通过分析这些组件的工作机制,帮助读者更好地理解Hadoop的架构及其在大数据处理中的应用。 ... [详细]
  • 全面解读Apache Flink的核心架构与优势
    Apache Flink作为大数据处理领域的新兴力量,凭借其独特的流处理能力和高效的批处理性能,迅速获得了广泛的关注。本文旨在深入探讨Flink的关键技术特点及其应用场景,为大数据处理提供新的视角。 ... [详细]
  • 初探Hadoop:第一章概览
    本文深入探讨了《Hadoop》第一章的内容,重点介绍了Hadoop的基本概念及其如何解决大数据处理中的关键挑战。 ... [详细]
  • Hadoop MapReduce 实战案例:手机流量使用统计分析
    本文通过一个具体的Hadoop MapReduce案例,详细介绍了如何利用MapReduce框架来统计和分析手机用户的流量使用情况,包括上行和下行流量的计算以及总流量的汇总。 ... [详细]
  • 流处理中的计数挑战与解决方案
    本文探讨了在流处理中进行计数的各种技术和挑战,并基于作者在2016年圣何塞举行的Hadoop World大会上的演讲进行了深入分析。文章不仅介绍了传统批处理和Lambda架构的局限性,还详细探讨了流处理架构的优势及其在现代大数据应用中的重要作用。 ... [详细]
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • PHP 5.5.0rc1 发布:深入解析 Zend OPcache
    2013年5月9日,PHP官方发布了PHP 5.5.0rc1和PHP 5.4.15正式版,这两个版本均支持64位环境。本文将详细介绍Zend OPcache的功能及其在Windows环境下的配置与测试。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 本文详细介绍了 Flink 和 YARN 的交互机制。YARN 是 Hadoop 生态系统中的资源管理组件,类似于 Spark on YARN 的配置方式。我们将基于官方文档,深入探讨如何在 YARN 上部署和运行 Flink 任务。 ... [详细]
  • PHP 过滤器详解
    本文深入探讨了 PHP 中的过滤器机制,包括常见的 $_SERVER 变量、filter_has_var() 函数、filter_id() 函数、filter_input() 函数及其数组形式、filter_list() 函数以及 filter_var() 和其数组形式。同时,详细介绍了各种过滤器的用途和用法。 ... [详细]
author-avatar
城隍山人因
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有