作者:fuzhipai | 来源:互联网 | 2023-08-30 17:57
如今ApacheHadoop已成为大数据行业发展背后的驱动力。Hive和Pig等技术也经常被提到,但是他们都有什么功能,为什么会需要奇怪的名字(如Oozie,ZooKeeper、F
如今Apache Hadoop已成为大数据行业发展背后的驱动力。Hive和Pig等技术也经常被提到,但是他们都有什么功能,为什么会需要奇怪的名字(如Oozie,ZooKeeper、Flume)。
Hadoop带来了廉价的处理大数据(大数据的数据容量通常是10-100GB或更多,同时数据种类多种多样,包括结构化、非结构化等)的能力。但这与之前有什么不同?
现今企业数据仓库和关系型数据库擅长处理结构化数据,并且可以存储大量的数据。但成本上有些昂贵。这种对数据的要求限制了可处理的数据种类,同时这种惯性所带的缺点还影响到数据仓库在面对海量异构数据时对于敏捷的探索。这通常意味着有价值的数据源在组织内从未被挖掘。这就是Hadoop与传统数据处理方式最大的不同。
本文就重点探讨了Hadoop系统的组成部分,并解释各个组成部分的功能。
MapReduce——Hadoop的核心
Google的网络搜索引擎在得益于算法发挥作用的同时,MapReduce在后台发挥了极大的作用。MapReduce框架成为当今大数据处理背后的最具影响力的“发动机”。除了Hadoop,你还会在MapReduce上发现MPP(Sybase IQ推出了列示数据库)和NoSQL(如Vertica和MongoDB)。
MapReduce的重要创新是当处理一个大数据集查询时会将其任务分解并在运行的多个节点中处理。当数据量很大时就无法在一台服务器上解决问题,此时分布式计算优势就体现出来。将这种技术与Linux服务器结合可获得性价比极高的替代大规模计算阵列的方法。Yahoo在2006年看到了Hadoop未来的潜力,并邀请Hadoop创始人Doug Cutting着手发展Hadoop技术,在2008年Hadoop已经形成一定的规模。Hadoop项目再从初期发展的成熟的过程中同时吸纳了一些其他的组件,以便进一步提高自身的易用性和功能。
HDFS和MapReduce
以上我们讨论了MapReduce将任务分发到多个服务器上处理大数据的能力。而对于分布式计算,每个服务器必须具备对数据的访问能力,这就是HDFS(Hadoop Distributed File System)所起到的作用。
HDFS与MapReduce的结合是强大的。在处理大数据的过程中,当Hadoop集群中的服务器出现错误时,整个计算过程并不会终止。同时HFDS可保障在整个集群中发生故障错误时的数据冗余。当计算完成时将结果写入HFDS的一个节点之中。HDFS对存储的数据格式并无苛刻的要求,数据可以是非结构化或其它类别。相反关系数据库在存储数据之前需要将数据结构化并定义架构。
开发人员编写代码责任是使数据有意义。Hadoop MapReduce级的编程利用Java APIs,并可手动加载数据文件到HDFS之中。